利用热电偶和ADC实现高精度温度测量

最新更新时间:2012-03-22来源: 互联网关键字:热电偶  ADC  高精度  温度测量 手机看文章 扫描二维码
随时随地手机看文章
热电偶广泛用于各种温度检测。热电偶设计的最新进展,以及新标准和算法的出现,大大扩展了工作温度范围和精度。目前,温度检测可以在-270°C至+1750°C宽范围内达到±0.1°C的精度。为充分发挥新型热电偶能力,需要高分辨率热电偶温度测量系统。能够分辨极小电压的低噪声、24位、Σ-Δ模/数转换器(ADC)非常适合这项任务。数据采集系统(DAS)采用24位ADC评估(EV)板,热电偶能够在很宽的温度范围内实现温度测量。热电偶、铂电阻温度检测器(PRTD)和ADC相结合,可构成高性能温度测量系统。采用低成本、低功耗ADC的DAS系统,可理想满足便携式检测的应用需求。

热电偶入门

托马斯•塞贝克在1822年发现了热电偶原理。热电偶是一种简单的温度测量装置,由两种不同金属(金属1和金属2)组成(图1)。塞贝克发现不同的金属将产生不同的、与温度梯度有关的电势。如果这些金属焊接在一起构成温度传感器结(TJUNC,也称为温度结),另一端未连接的差分结(TCOLD,作为恒温参考端)上将呈现出电压,VOUT,该电压与焊接结的温度成正比。从而使热电偶输出随温度变化的电压/电荷,无需任何电压或电流激励。

图1. 热电偶简化电路
图1. 热电偶简化电路

VOUT温差(TJUNC - TCOLD)是金属1及金属2的金属类型的函数。该函数在美国国家标准与技术研究院(NIST) ITS-90热电偶数据库[1]中严格定义,覆盖了绝大多数实用金属1和金属2组合。利用该数据库,可根据VOUT测量值计算相对温度TJUNC。然而,由于热电偶以差分方式测量TJUNC,为了确定温度结的实测温度,就必须知道冷端绝对温度(单位为°C、°F或K)。所有现代热电偶系统都利用另一绝对温度传感器(PRTD、硅传感器等)精密测量冷端温度,并进行数学补偿。

图1所示热电偶简化电路的温度公式为:
Tabs = TJUNC + TCOLD (式1)
式中:
Tabs为温度结的绝对温度;
TJUNC为温度结与基准冷端的相对温度;
TCOLD为冷端参考端的绝对温度。

热电偶的类型各种各样,但是针对具体的工业或医疗环境可以选择最适合的异金属对儿。这些金属和/或合金组合被NIST及国际电工委员会标准化,简写为E、J、T、K、N、B、S、R等。NIST和IEC为常见的热电偶类型提供了热电偶参考表[1]。

NIST和IEC还为每种热电偶类型开发了标准数学模型。这些幂级数模型采用独特的系数组合,每种热电偶类型及不同温度范围的系数都不同[1]。

表1所示为部分常见热电偶类型(J、K、E和S)的例子。

表1. 常见的热电偶类型
Thermocouple Type Positive Conductor Negative Conductor Temperature Range (°C) Seebeck Coefficient at +20°C
J Chromel Constantan 0 to 760 51µV/°C
K Chromel Alumel -200 to +1370 41µV/°C
E Chromel Constantan -100 to +1000 62µV/°C
S Platinum (10% Rhodium) Rhodium 0 to 1750 7µV/°C

J型热电偶具有相对较高的塞贝克系数、高精度和低成本,应用广泛。这些热电偶使用相对简单的线性化算法,即可达到±0.1°C的测量精度。

K型热电偶覆盖的温度范围宽,在工业测量领域的应用非常广泛。这些热电偶具有适中的高塞贝克系数、低成本及良好的抗氧化性。K型热电偶的精度高达±0.1°C。

E型热电偶的应用没有其它类型热电偶普及。然而,这组热电偶的塞贝克系数最高。E型热电偶所需的测量分辨率低于其它类型。E型热电偶的测量精度可达到±0.5°C,需要的线性化计算方法相对复杂。

S型热电偶由铂和铑组成,这对组合能够在非常高的氧化环境下实现稳定、可复现的测量。S型热电偶的塞贝克系数较低,成本相对较高。S型热电偶的测量精度可达到±1°C,需要的线性化算法相对复杂。
应用示例

热电偶电路设计包括具有差分输入及能够分辨微小电压的高分辨率ADC、稳定的低漂移基准,以及准确测量冷端温度的方法。

图2所示为简化原理图。MX7705是一款16位、Σ-Δ ADC,内置可编程增益放大器(PGA),无需外部精密放大器,能够分辨来自热电偶的微伏级电压。冷端温度利用MAX6627远端二极管传感器以及位于热电偶连接器处、连接成二极管的晶体管测量。MX7705的输入共模范围扩展至低于地电势30mV,可实现有限的负温度范围[2]。

图2. 热电偶测量电路。MX7705测量热电偶输出,MAX6627和外部晶体管测量冷端温度,MAX6002为MX7705提供2.5V精密电压基准。
图2. 热电偶测量电路。MX7705测量热电偶输出,MAX6627和外部晶体管测量冷端温度,MAX6002为MX7705提供2.5V精密电压基准。

也有针对具体应用设计的IC,用于热电偶信号调理。这些IC集成本地温度传感器、精密放大器、ADC和电压基准。例如,MAX31855为冷端补偿热电偶至数字转换器,可数字化K、J、N、T或E型热电偶信号。MAX31855以14位(0.25°C)分辨率测量热电偶温度(图3)。

图3. 集成冷端温度补偿的ADC,转换热电偶电压时无需外部补偿。
图3. 集成冷端温度补偿的ADC,转换热电偶电压时无需外部补偿。

误差分析

冷端补偿

热电偶为差分传感器,利用温度结和冷端之间的温差产生输出电压。根据式1,只有精密测得冷端绝对温度(TREF)时,才能得到温度结的绝对温度(Tabs)。

可利用新型铂RTD (PRTD)测量冷端绝对温度。它在很宽的温度范围内提供良好的性能,尺寸小、功耗低,成本非常合理。

图4所示为精密DAS的简化原理图,采用了MAX11200 (24位、Σ-Δ ADC)评估(EV)板,可实现热电偶温度测量。本例中,利用R1 - PT1000 (PTS 1206,1000Ω)测量冷端绝对温度。该解决方案能够以±0.30°C或更高精度测量冷端温度[3]。

图4. 热电偶DAS简化图
图4. 热电偶DAS简化图

如图4所示,MAX11200的GPIO设置为控制精密多路复用器MAX4782,它选择热电偶或PRTD R1 - PT1000。该方法可利用单个ADC实现热电偶或PRTD的动态测量。提高了系统精度,降低校准要求。

非线性误差

热电偶为电压发生装置。但是,大多数常见热电偶[2,4]的输出电压作为温度的函数呈现非常高的非线性。

图4和图5中说明,如果没有经过适当补偿,常见的工业K型热电偶的非线性误差会超过数十摄氏度。

图5. K型热电偶的输出电压和温度关系图。曲线在-50°C至+350°C范围内线性度较好;在低于-50°C和高于+350°C时,相对于绝对线性度存在明显偏差。
图5. K型热电偶的输出电压和温度关系图。曲线在-50°C至+350°C范围内线性度较好;在低于-50°C和高于+350°C时,相对于绝对线性度存在明显偏差。[1]

图6. 相对于直线逼近的偏差,假设线性输出为从-50°C至+350°C,平均灵敏度为k = 41?V/°C。
图6. 相对于直线逼近的偏差,假设线性输出为从-50°C至+350°C,平均灵敏度为k = 41µV/°C。[1]

IEC采用的NIST ITS-90等现代热电偶标准化处理、查找表和公式数据库[1],是当前系统间互换热电偶类型的基础。通过这些标准,热电偶很容易由相同或不同制造商的其它热电偶所替代,而且经过最少的系统设计更新或校准即可确保性能指标。

NIST ITS-90热电偶数据库提供了详细的查找表。通过使用标准化多项式系数[1],还可利用多项式在非常宽的温度范围内将热电偶电压换算成温度(°C)。

根据NIST ITS-90热电偶数据库,多项式系数为:

T = d0 + d1E + d2E² + ... dNEN (式2)

式中:
T为温度,单位为°C;
E为VOUT,热电偶输出,单位为mV;
dN为多项式系数,每一热电偶的系数是唯一的;
N = 多项式的最大阶数。

表2所示为一个K型热电偶的NIST (NBS)多项式系数。

表2. K型热电偶系数

Type-K Thermocouple Coefficients
Temperature Range (°C) -200 to 0 0 to 500 500 to 1372
Voltage Range (mV) -5.891 to 0 0 to 20.644 20.644 to 54.886
Coefficients  
d0 0.0000000E+00 0.0000000E+00 -1.3180580E+02
d1 2.5173462E+01 2.5083550E+01 4.8302220E+01
d2 -1.1662878E+00 7.8601060E+02 -1.6460310E+00
d3 -1.0833638E+00 -2.5031310E-01 5.4647310E-02
d4 -8.9773540E-01 8.3152700E-02 -9.6507150E-04
d5 -3.7342377E-01 -1.2280340E-02 8.8021930E-06
d6 -8.6632643E-02 9.8040360E-04 -3.1108100E-08
d7 -1.0450598E-02 4.4130300E-05
d8 -5.1920577E-04 1.0577340E-06
d9 -1.0527550E-08
Error Range (°C) -0.02 to 0.04 -0.05 to 0.04 -0.05 to 0.06

利用表2中的多项式系数,能够在-200°C至+1372°C温度范围内以优于±0.1°C的精度计算温度T。大多数常见热电偶都有不同系数表可用[1]。

同样,在-200°C至0、0至+500°C和+500°C至+1372°C温度范围也可以找到类似的NIST ITS-90系统,能够以更高精度(低于±0.1°C,相对于±0.7°C)计算温度。与原来的“单”间隔表进行比较即可看出这点[2]。
ADC规格参数/分析

表3所示为MAX11200的基本性能指标,具有图4中所示的电路特性。

表3. MAX11200的主要技术指标

  MAX11200 Comments
Sample Rate (sps) 10 to 120 The MAX11200's variable oversampling rate can be optimized for low noise and for -150dB line-noise rejection at 50Hz or 60Hz.
Channels 1 GPIOs allow external multiplexer control for multichannel measurements.
INL (ppm, max) ±10 Provides very good measurement linearity.
Offset Error (µV) ±1 Provides almost zero offset measurements.
Noise-Free Resolution (Bits) 19.0 at 120sps; 19.5 at 60sps; 21.0 at 10sps Very high dynamic range with low power.
VDD (V) AVDD (2.7 to 3.6)

DVDD (1.7 to 3.6)
AVDD and DVDD ranges cover the industry's popular power-supply ranges.
ICC (µA, max) 300 Highest resolution per unit power in the industry; ideal for portable applications.
GPIOs Yes Allows external device control, including local multiplexer control.
Input Range 0 to VREF, ±VREF Wide input ranges
Package 16-QSOP,

10-µMAX® (15mm²)
Some models like the MAX11202 are offered in a 10-µMAX package—a very small size for space-constrained designs.

本文中使用的MAX11200是一款低功耗、24位、Σ-Δ ADC,适合于需要宽动态范围、高分辨率的低功耗应用。利用该ADC,基于式3和4可计算图3电路的温度分辨率。

Equation 3. (式3)
Equation 4. (式4)

式中:
Rtlsb为热电偶在1 LSB时的分辨率;
Rtnfr为热电偶无噪声分辨率(NFR);
VREF为基准电压;
Tcmax为测量范围内的热电偶最大温度;
Tcmin为测量范围内的热电偶最小温度;
Vtmax为测量范围的热电偶最大电压;
Tcmax为测量范围内的热电偶最小电压;
FS为ADC满幅编码,对于双极性配置的MAX11200为(223-1);
NFR为ADC无噪声分辨率,对于双极性配置的MAX11200为(220-1),10Sa/s时。

表4所列为利用式3和4计算表1中K型热电偶的测量分辨率。

表4. K型热电偶在不同温度范围内的测量分辨率

Temperature Range (°C) -200 to 0 0 to 500 500 to 1372
Voltage Range (mV) -5.891 20.644 34.242
Rtlsb Resolution (°C/LSB) 0.0121 0.0087 0.0091
Rtnfr Resolution (°C/NFR) 0.0971 0.0693 0.0729

表4中提供了每个温度范围内的°C/LSB误差和°C/NFR误差计算值。无噪声分辨率(NFR)表示ADC能够可靠区分的最小温度值。对于整个温度范围,NFR值低于0.1°C,对于工业和医疗应用中的大多数热电偶远远足够。

热电偶与MAX11200评估板的连接

MAX11200EVKIT提供了全功能、高分辨率DAS。评估板可帮助设计工程师快速完成项目开发,例如验证图4所示解决方案。

在图4所示原理图中,常见的K型OMEGA热电偶(KTSS-116 [5])连接至差分评估板输入A1。利用Maxim应用笔记4875中介绍的高性价比比例方案,测量冷端温度的绝对值[3]。R1 (PT1000)输出连接至评估板输入A0。MAX11200的GPIO控制精密多路复用器MAX4782,复用器动态选择将热电偶或PRTD R1输出连接至MAX11200的输入。

K型热电偶(图3、4)在-50°C至+350°C范围内的线性度适当。对于有些不太严格的应用,线性逼近公式(式5)能大大降低计算量和复杂度。

近似绝对温度可计算为:

Equation 5. (式5)

式中:
E为实测热电偶输出,单位为mV;
Tabs为K型热电偶的绝对温度,单位为°C;
Tcj为PT1000实测的热电偶冷端温度,单位为°C [3];
Ecj为利用Tcj计算得到的冷端热电偶等效输出,单位为mV。

所以:
k = 0.041mV/°C——从-50°C至+350°C范围内的平均灵敏度

然而,为了在更宽的温度范围(-270°C至+1372°C)内精密测量,强烈建议采用多项式(式2)和系数(根据NIST ITS-90):

Tabs = ƒ(E + Ecj) (式6)

式中:
Tabs为K型热电偶的绝对温度,单位为°C;
E为实测热电偶输出,单位为mV;
Ecj为利用Tcj计算得到的冷端热电偶等效输出,单位为mV;
f为式2中的多项式函数;
TCOLD为PT1000实测的热电偶的冷端温度,单位为°C。

图7所示为图4的开发系统。该系统包括经认证的精密校准器,Fluke®-724,作为温度模拟器代替K型OMEGA热电偶。

图7. 图4开发系统
详细图片(PDF, 3.1MB)
图7. 图4开发系统

Fluke-724校准器提供与K型热电偶在-200°C至+1300°C范围内输出相对应的精密电压,送至基于PT1000的冷端补偿模块。基于MAX11200的DAS动态选择热电偶或PRTD测量值,并通过USB端口将数据送至笔记本计算机。专门开发的DAS软件采集并处理热电偶和PT1000输出产生的数据。

表5列出了-200°C至+1300°C温度范围内的测量和计算值,采用式5和6。

表5. -200°C至+1300°C范围的测量计算

Temperature (Fluke-724) (°C) PT1000 Code Measured at "Cold Junction" (LSB) Thermocouple Code Adjusted to 0°C by PT1000 Measurements (LSB) Temperature Calculated by Equation 6 and Table 2 (°C) Temperature Error vs. Calibrator (°C) Temperature Calculated by "Linear" Equation 5 (°C)
-200 326576 -16463 -199.72 0.28 -143.60
-100 326604 -9930 -99.92 0.08 -86.62
-50 326570 -5274 -50.28 -0.28 -46.01
0 326553 6 0.00 0.00 0.05
20 326590 2257 20.19 0.19 19.68
100 326583 11460 100.02 0.02 99.96
200 326486 22779 200.18 0.18 198.69
500 326414 57747 500.16 0.16 503.70
1000 326520 115438 1000.18 0.18 1006.92
1300 326544 146562 1300.09 0.09 1278.40

如表5所示,利用式6,基于MAX11200的DAS系统在非常宽的温度范围内可达到±0.3°C数量级的精度。式5中的线性逼近法在很窄的-50°C至+350°C范围内仅能实现1°C至4°C的精度。

注意,式6需要相对复杂的线性化计算算法。

大约十年之前,在DAS系统设计中实现此类算法会受到技术和成本的限制。当今的现代化处理器速度快、性价比高,解决了这些难题。

总结

最近几年,适用于-270°C至+1750°C温度范围的高性价比、热电偶温度检测技术取得较大进展。在改进温度测量和范围的同时,成本也更加合理,功耗更低。

如果ADC和热电偶直接连接,这些基于热电偶的温度测量系统需要低噪声ADC (如MAX11200)。热电偶、PRTD和ADC集成至电路时,能够实现非常适用于便携式检测应用的高性能温度测量系统。

MAX11200具有较高的无噪声分辨率、集成缓冲器和GPIO驱动器,可直接连接任何传统的热电偶及高分辨率PRTD (如PT1000),无需额外的仪表放大器或专用电流源。更少的接线和更低的热误差进一步降低系统复杂性和成本,使设计者能够实现DAS与热电偶及冷端补偿模块的简单接口。

关键字:热电偶  ADC  高精度  温度测量 编辑:神话 引用地址:利用热电偶和ADC实现高精度温度测量

上一篇:运用电磁流量计提高石油采收率方法
下一篇:如何经济高效地检测手机问题

推荐阅读最新更新时间:2023-10-12 20:38

高精度电流探头的工作原理和校准方法分别怎样的
  高精度电流探头是一款能够同时测量直流和交流的高频电流探头。其特点包括:高带宽,可准确快速捕捉电流波形;高精度,典型精度为1%,满足大部分测试领域的需要;多款探头可供选择,方便不同量程电流测量;标准的BNC输出接口,可匹配任何厂家示波器。常用于开关电源、马达驱动器、电子整流计、LED照明、新能源等设计和测试应用中。   高精度电流探头的工作原理和校准方法:   电流探头工作原理:流经导线的电流会在导线周围形成电磁通量场,电流探头测量电子在导线内运动时生成的磁场,通过检测磁场的变化,把磁场转换成相应的电压信号,通过和实时示波器配合,得到对应的电流波形。电流探头在测试直流和低频交流时,利用霍尔器件来检测,利用霍尔效应来测量交直流
[测试测量]
XMEGA128学习笔记7-模数转换ADC
Xmega的ADC特点有: 1、高达12位精度 2、高达2M/s采样率 3、有符号和无符号输出选择 4、可选增益(1X 2X 4X 8X 16X 32X 64X) 5、流水线结构设计 6、4个虚拟通道 7、结果比较功能 8、知道校准 9、内部连接DAC输出 整体结构如图所示: 今天我们测量内部通道的VCC/10和内部温度。 首先根据前面写的设置好USART。 然后我们按照下图设置ADCA进行内部通道的采集,0通道是内部温度,1通道是VCC/10. 最后生成代码,然后加入以下代码: while (1) { // Place your code here delay_ms(1000);
[单片机]
XMEGA128学习笔记7-模数转换<font color='red'>ADC</font>
国防科大利用电磁波实现高精度穿透成像
墙内电线 穿透墙体效果     一款新型高精度全息穿透成像探测仪,日前在国防科学技术大学研制成功。该探测仪能穿透非金属介质,探测内部微小隐蔽物体并对物体成像,分辨率达到2mm,可广泛应用于建筑、生物医学、反恐、安检等领域。   体积小,与一个普通的电饭煲相当,单人即可手持操作,是这款探测仪的突出特点。与同类设备如X光机和CT机相比,其体积、重量都大大缩小。由于采用电磁波完成探测工作,该设备没有高能射线辐射危险,操作人员无须像操作X光机那样进行专门防护;其电磁波辐射功率极低,不到手机辐射的1/10,对人体非常安全。   该款探测仪内部集成超宽带电磁波收发组件,可以对非金属物体内部进行快速电磁波扫描,借助强大的
[医疗电子]
Maxim推出可实现高传感器信号分辨率的单通道、24位ADC
Maxim推出单通道、24位ADC MAX11210,器件可提供业内领先的23.9位有效分辨率(ENOB),工作电流小于300µA。较高的ENOB省去了耗电量极大的增益电路,可实现最高的传感器信号分辨率。该特性使MAX11210能够满足4–20mA电流环传感器(此类应用对功耗和高ENOB的要求极为严格)苛刻的功耗要求(500µA,最大值)。MAX11210非常适合便携仪表、温度传感器和其它低功耗、高精度传感器应用。 MAX11210通过两种独特的方式降低功耗、成本和尺寸:器件具有四个通用输入/输出(GPIO)引脚,并在模拟和基准输入端集成了缓冲放大器。四个GPIO引脚可用于控制外部16通道复用器,将MA
[模拟电子]
Maxim推出可实现高传感器信号分辨率的单通道、24位<font color='red'>ADC</font>
STM32G0开发笔记:使用ADC进行NTC温度采集
使用Platformio平台的libopencm3开发框架来开发STM32G0,以下使用ADC进行NTC温度采集。 1 新建项目 建立ntc_temp项目 在PIO的Home页面新建项目,项目名称ntc_temp,选择开发板为 MonkeyPi_STM32_G070RB,开发框架选择libopencm3; 项目建立完成后在src目录下新建main.c主程序文件; 修改下载和调试方式,这里开发板使用的是DAPLink仿真器,因此修改platformio.ini文件如下: 1upload_protocol = cmsis-dap 2debug_tool = cmsis-dap 为了能使用printf的浮点功能,可以加入如下配置
[单片机]
STM32G0开发笔记:使用<font color='red'>ADC</font>进行NTC温度采集
∑-ΔADC应用笔记
引言   许多高端工业应用中,高性能数据采集系统(DAS)与各种传感器之间需要提供适当的接口电路。如果信号接口要求提供多通道、高精度的幅度和相位信息,这些工业应用可以充分利用MAX11040等ADC的高动态范围、同时采样以及多通道优势。本文介绍了MAX11040的Σ-Δ架构,以及如何合理选择设计架构和外部元件,以获得最佳的系统性能。 本应用笔记旨在帮助设计人员在高性能、多通道数据采集系统(DAS)设计中优化工业传感器与高性能ADC之间的连接电路。以电网监测系统为例,本文说明了使用MAX11040 Σ-Δ ADC 的优势以及如何选择适当的架构和外围器件,优化系统性能。   高速、Σ-Δ架构的优势   图1所示为
[模拟电子]
∑-Δ<font color='red'>ADC</font>应用笔记
宽电流传感拓扑实现高精度的12V汽车电池的高侧检测
为了提高新车的燃油经济性,汽车中越来越多的功能正在电子化,以减少内燃机的连续负载。这些功能包括水、油和燃料泵,气门驱动和动力转向系统。由于电力负荷是由发动机转移到汽车电池,保持电池充电和正常工作的要求变得更加重要。 对于汽车电气系统设计师来说,电池传感器是一个极其重要的元件:它通过LIN总线连接电气系统的电子控制单元(ECU),用于显示充电状态、正常状态和功能读数状态。 通常情况下,电池传感器位于电池负极,用于测量低侧电流、电压和温度。电池传感器的工作原理是同时捕捉1kHz的采样率下的电池电流和电压值。这需要极高精度的充电状态测量,并能够动态跟踪电池阻抗。基于分流的低侧电流检测零偏移高精度测量系统与电压检测功能同步运行,可在几乎
[嵌入式]
基于DSP和FPGA的高精度数据采集卡设计
引言   当前,许多领域越来越多地要求具有高精度A/D转换和实时处理功能。同时,市场对支持更复杂的显示和通信接口的要求也在提高,如环境监测、电表、医疗设备、便携式数据采集以及工业传感器和工业控制等。传统设计方法是应用MCU或DSP通过软件控制数据采集的A/D转换,这样必将频繁中断系统的运行,从而减弱系统的数据运算能力,数据采集的速度也将受到限制。本文采用DSP+FPGA的方案,由硬件控制A/D转换和数据存储,最大限度地提高系统的信号采集和处理能力。 系统结构   整个采集卡包括信号调理、数据采集、数据处理和总线接口设计。系统结构如图1所示。 图1 系统结构框图   本文设计了具有信号衰减、增
[模拟电子]
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved