您在使用一个高速模数转换器 (ADC) 时,总是期望性能能够达到产品说明书载明的信噪比 (SNR) 值,这是很正常的事情。您在测试 ADC 的 SNR 时,您可能会连接一个低抖动时钟器件到转换器的时钟输入引脚,并施加一个适度低噪的输入信号。如果您并未从您的转换器获得 SNR 产品说明书标称性能,则说明存在一些噪声误差源。如果您确信您拥有低噪声输入信号和一种较好的布局,则您的输入信号频率以及来自您时钟器件抖动的组合可能就是问题所在。您会发现“低抖动”时钟器件适合于大多数 ADC 应用。但是,如果 ADC 的输入频率信号和转换器的 SNR 较高,则您可能就需要改善您的时钟电路。
低抖动时钟器件充其量有宣称的 1 微微秒抖动规范,或者您也可以从一个 FPGA生成同样较差的时钟信号。这会使得高速 ADC 产生 SNR 误差问题包括 ADC 量化噪声、差分非线性 (DNL) 效应、有效转换器内部输入噪声和抖动。利用方程式 1 中的公式,您可以确定抖动是否有问题,公式给出了外部时钟和纯 ADC 抖动产生的 ADC SNR 误差。
在该方程式中,fIN 为转换器的输入信号频率。另外,tJITTER-TOTAL 为时钟信号和ADC时钟输入电路的 rms 抖动。请注意,fIN 并非时钟频率 (fCLK)。外部时钟器件到 ADC 的 1 微微秒抖动适合于一些而不是所有高速 ADC 应用,如图 1 所示。
图 1 抖动产生的 SNR 为输入信号的函数
方程式 1 让您能够计算出特定 ADC 的要求时钟抖动估计值。例如,一个 70 dB SNR 的 ADC,输入信号为 100 MHz,您可以计算得到 tJITTER_TOTAL 的值为 503 微微秒。如果输入 ADC 孔径抖动为 150 微微秒,则由方程式 2 可得到一个较高的外部时钟抖动要求估计值。
在方程式 2 中,tJITTER-CLK 为注入 ADC 时钟的抖动,而 tJITTER-ADC 为 ADC 的孔径抖动、时钟振幅和斜率。继续我们的估算,我们让 tJITTER-ADC 只与 ADC 的 150 微微秒内部抖动相等,并忽略时钟振幅和斜率的影响。利用方程式 2,tJITTER-CLK 的高估值为 480 微微秒。
在本文中,我们只初步研究了改善高速 ADC 时钟信号背后存在的一些问题。我们需要更多地关注时钟振幅和斜率,因为它们影响系统抖动。另外,我们还需要知道如何实施低抖动时钟电路的硬件部分。
在本文介绍的第二种时钟设计之中,您需要认真关注几件事情。时钟抖动在 ADC 输入频率和实际时钟抖动方面影响 ADC 的 SNR 性能。另外,不要总是相信时钟器件厂商!在您转向产品以前,请使用 ADC 厂商提供的评估板来测试您的时钟源。您会对最终结果更为欣喜
关键字:高速ADC 抖动产生 SNR
编辑:神话 引用地址:高速ADC抖动产生SNR问题解析
推荐阅读最新更新时间:2023-10-12 20:40
一种用于高速ADC的采样保持电路的设计
近年来,随着数字信号处理技术的迅猛发展,数字信号处理技术广泛地应用于各个领域。因此对作为模拟和数字系统之间桥梁的模数转换器(ADC)的性能也提出了越来越高的要求。低电压高速ADC在许多的电子器件的应用中是一个关键部分。由于其他结构诸如两步快闪结构或内插式结构都很难在高输入频率下提供低谐波失真,因此流水线结构在高速低功耗的ADC应用中也成为一个比较常用的结构。 作为流水线ADC前端的采样保持电路是整个系统的关键模块电路之一。设计一个性能优异的采样保持电路是避免采样歪斜(timing skew)最直接的方法。 本文基于TSMC 0.25μm CMOS工艺,设计了一个具有高增益、高带宽的OTA,并且利用该OTA构造一个适用
[电源管理]
高速ADC的性能测试
摘要:针对某信号处理机中的高速A/D转换器(ADC)的应用,利用数字信号处理机的硬件平台,采用纯正弦信号作为输入信号,用数字信号处理器(DSP)控制采样,并将A/D转换后的数据存储,进行FFT变换,进而来分析ADC的信噪比及有效位数。该测试方法具有全数字、可编程、精确度高等优点,是较为先进的测试方法。
关键词:AD转换器 信噪比 有效位数 FFT DSP
目前的实时信号处理机要求ADC尽量靠近视频、中频甚至射频,以获取尽可能多的目标信息。因而,ADC的性能好坏直接影响整个系统指标的高低和性能好坏,从而使得ADC的性能测试变得十分重要。
ADC静态测试的方法已研究多年,国际上已有标准的测试方法,但静态测试不能反映ADC的动态特
[模拟电子]
利用高速ADC设计用于汽车的LIDAR系统
LIDAR(激光探测与测距)通过雷达用于大范围定位、测距和目标轮廓描绘应用领域,这种系统由能在要求的范围内发射脉冲或连续激光的激光器和用于反射信号分析的高速、低噪声接收器组成。发射的激光作用在目标物体上,并被目标物体所改变。根据目标的反射特性,一部分光被反射/散射回接收器。发射信号特性的改变能用于确定目标的特性,在最通常的应用中,传播时间(TOF)被用于确定距离。
随着模拟技术的不断改善,LIDAR在很多具有广泛前景的领域得到应用,ADC技术的发展可以实现更高精度和更低功率的系统设计。
汽车系统设计师开发成熟的LIDAR系统,可以根据交通情况自动地控制汽车速度和刹车系统,这样的系统还能动态地控制与其它汽车和
[应用]
高速12位模数转换器及其在图像采集中的应用
1 AD7892的特点及功能
AD7892是美国ANALOG DEVICE公司生产的具有采样保持功能的逐次逼近式12位高速ADC,根据输入模拟信号范围的不同可分为AD7892-1,AD7892-2, AD7892-3三种类型。其中,AD7892-1输入信号范围为±10V或者±5V(可设置),AD7892-2输入信号范围为0~+2.5V,这两种的采样转换速率均为500kSPS,AD7892-3的输入信号范围为±2.5V,采样转换速率为600kSPS,AD7892-1和AD7892-3的输入信号过压保护电压分别为±17V和±7V。
AD7892模数转换器 具有如下特点:
●单电源工作(+5V);
[模拟电子]
3GSps超高速ADC系统设计解决方案
包含千兆采样率ADC的系统设计会遇到许多复杂情况。面临的主要挑战包括时钟驱动、模拟输入级和高速数字接口。本文探讨了如何才能克服这些挑战,并给出了在千兆赫兹的速度下进行系统优化的方法。在讨论中,时钟设计、差分输入驱动器的设计、数字接口和布局考虑都是十分复杂的问题。本文中的参考设计将采用ADC083000/B3000。
时钟源是高速数据转换系统中最重要的子电路之一。这是因为时钟信号的定时精度会直接影响ADC的动态性能。为了将这种影响最小化,ADC的时钟源必须 具有很低的定时抖动或相位噪声。如果在选择时钟电路时没有考虑该因素,则系统的动态性能在很大程度上将不由前端模拟输入或ADC的质量决定。理想时钟总能 在电平跳变之间保持精确的
[电源管理]
高速ADC时钟抖动及其影响的研究
随着信息产业的快速发展,对A/D、D/A的性能要求越来越高。目前,针对高速、高精度ADC 的研究很活跃。采样时钟是ADC变换电路的基本要素,对电路设计者来讲,ADC时钟电路采用的时钟方案、时钟类型、时钟电压等级、时钟抖动都是在实际电路设计时必须予以考虑的问题。采样时钟的抖动是一个短期的、非积累性变量,表示数字信号的实际定时位置与其理想位置的时间偏差。时钟抖动会使ADC的内部电路错误地触发采样时间,结果造成模拟输入信号在幅度上的误采样,从而恶化ADC的信噪比,采样时钟的抖动对高速、高精度ADC性能的影响也不可忽视 。 图1所示是一种典型的ADC时钟电路,高速ADC,例如 ADS5500 ,经常采用这种时钟结构。本文针对图1所示时
[工业控制]
高速12位模数转换器AD7892及其在图像采集中的应用
摘要: AD7892是美国AD公司生产的LC2MOS型单电源12位模数转换器,可并行或串行输出,文中介绍了它的功能、特点,工作时序以及在图像采集系统中的应用电路。
1 AD7892的特点及功能
AD7892是美国ANALOG DEVICE公司生产的具有采样保护功能的逐次逼近式12位高速ADC,根据输入模拟信号范围的不同可分为AD7892-1,AD7892-2,AD7892-3三种类型。其中,AD7892-1输入信号范围为±10V或者±5V(可设置),AD7892-2输入信号范围为0~+2.5V,这两种的采样转换速率均为500kSPS,AD7892-3的输入信号范围为±2.5V,采样转换速率为600kSPS,A
[模拟电子]
如何处理高电压输入却不损失SNR
要找到能和模拟输入范围一致,同时具有适量输入、大小符合所需和正确采样速度的模拟数字转换器(ADC)往往相当困难。特别是系统设计师在采用宽电压波动时,要考虑到缩小驱动ADC满量程的输入讯号将大幅降低讯号噪声比(SNR)。本文将探讨影响SNR损耗的因素,以及如何能将其量化,更重要的是如何将它最小化。
附图 :参考设计架构
在使用模拟数字转换器做设计时,一个最普遍的误解是缩小输入讯号来驱动ADC的满量程刻度将大幅缩减讯号噪声比。正在进行宽电压波动设计的工程师应特别关注这个问题。另外,一些针对低压输入(5V或以下)提供比高压输入更宽广电压范围的模拟数字转换器也加剧了此一问题。更高的供应电压通常会导玫较高功耗,并提升板级
[模拟电子]