ADC外围电路设计方法

最新更新时间:2012-10-22来源: 互联网关键字:ADC  外围电路 手机看文章 扫描二维码
随时随地手机看文章

在使用ADC芯片时,由于ADC的型号多样化,其性能各有局限性,所以为了使ADC能够适应现场需要以及满足后继电路的要求,必需对ADC的外围电路进行设计。ADC外围电路的设计通常包括模拟电路、数字电路和电源电路的设计。

1 模拟电路的设计
1.1 前置放大器电路的设计
    市场上除了少数的ADC本身带有放大电路外,多数ADC都不具备此结构,而一般模/数转换系统的模拟输入信号是比较小的,因此通常需要使用模拟放大器,来提升输入电压。模拟放大器一般选用集成运算放大器、仪表放大器或隔离放大器等。使用模拟放大器时要着重考虑放大器的带宽和精度,当选择运算放大器时,其带宽和精度都应当优于所选择的ADC。
    模拟放大器不仅能放大模拟输入信号,而且还具有阻抗变化的作用。对于输入电阻比较小的ADC,而信号源的内阻又比较大时,需要选用高输入阻抗、低输出阻抗的放大器,有时也可以加接电压跟随器,以提高输入阻抗,从而达到匹配的目的。
1.2 采样保持电路的设计
    采样保持电路可以使ADC转换器在转换期间保持电压不变,因此对于没有采样保持电路的ADC,必需在模拟输入之前加接采样保持电路。在选用采样保持器时,要注重捕获时间和顶级率的选择,因为它们直接关系到模/数转换系统的整体性能。捕获时间实质就是采样保持器的采样阶段所需的时间,它要与ADC的转换时间合理配合,过大则影响ADC的转换速率,过小则容易产生功能混乱或数据丢失等现象。
    在ADC进行转换的过程中,采样保持电路进入保持阶段。通常采样保持电路是靠电容来进行电压保持的,由于电容和采样开关中漏电流以及保持电路中偏置电流的影响,使保持的模拟电压随时间的延续而有所下降(或上升),其下降的速率就是采样保持电路的顶级率。顶级率过大就会影响转换精度。顶级率和捕获时间不但与采样保持电路有关,而且还与外接的保持电容有关,增大电容时,可以减小顶级率,但捕获时间将增大,因此需要全面考虑。对于模拟输入电压变化缓慢的系统,可以不使用采样保持电路,一般模拟输入电压变化不超过1/2LSB时,就可不用。
1.3 多路开关的设计
    多路开关也是ADC的主要外围设备之一。设计时需要注意以下问题:实际中,部分ADC的输入电阻较小,而模拟多路开关并不是理想开关,其导通电阻较大,因此ADC与模拟多路开关之间的阻抗并不匹配,这将影响整个系统的运行精度,因此不容忽视,这时可在多路开关与ADC之间加接高输入阻抗的电压跟随器;此外模拟多路开关存在漏电流,而且各路开关是并联的,当开关的路数较多时,漏电流就不能忽视,这时可采用分级模拟开关来解决这个问题;在多通道的数据采集系统中,当通道切换时,模拟电压将产生阶跃变化,这时应等阶跃变化稳定后,再让采样保持电路进入采样阶段;具有分级流水结构的ADC和∑-△型的ADC,其输出的数据是滞后的,因此需要全面考虑转换器外围电路所需的稳定时间以及ADC对多路开关的阶跃变化所需的响应时间等。

2 数字外围电路的设计
    ADC的输出是数字电路,它与后继电路相连接所需要的数据线可以分为并行接口和串行接口两种型式。
2.1 并行接口电路的设计
    绝大多数ADC的数据输出都具备并行接口,可以很方便地与下级电路(微处理器等)的数据总线相连接,数据传送速度快。ADC的数据总线常用的有8位和16位,但一般10~16位的ADC既能与16位的接口方式与16位的微控制器直接相连,又能以8位接口方式与8位微控制器相连。并行接口除了并行的数据线外,还需要许多控制信号线和状态信号线,如启动转换信号线、读/写信号线、片选信号线等。由于各种ADC的芯片各不相同,所以在设计时,必须弄清具体型号的各信号定义、时序以及使用微控制器的总线时序,从而才能设计出满足时序要求的接口电路。
2.2 串行接口电路的设计
    串行接口只需要1根双向数据线、或者2条传输方向相反的数据线和少量的控制线。这样能大大地减少芯片的引脚数目,进而简化了整机的布线。实际中多数微型控制器都有串行接口,这样给串行数据输出的ADC使用提供了便利的条件,不过这种传输方式速度慢、效率低,但随着芯片工作频率的提高,串行传输速率也得到了改善。常见的串行接口有通用异步接收/发送器、串行外围接口和I2C总线等,设计时应根据具体情况采取相应的方式。

3 电源和接地的设计
    在ADC电路中既含有模拟信号,又含有数字信号,而模拟信号部分是精密的信号处理电路,例如分辨率为10位5V量程的ADC,所对应1LSB的模拟电压为4.88mV。数字电路部分是与其他逻辑电路连接在一起的,工作信号为脉冲信号,信号的幅度大,频谱宽。对于模拟信号来说,数字信号是一个干扰源,地线噪声可达几十毫伏,甚至几百毫伏。如果存在接地不良,布线不当等因素,那么数字噪声将严重影响模拟信号部分的精度,甚至无法工作,所以对于高速ADC或高分辨率的转换系统要特别重视印制电路板的布线以及电源的去耦问题。为了减小地线噪声干扰可以采取下列措施:
3.1 参考点的设计
    AGND与DGND分开,建立模拟参考点,把所有的模拟部分都接到这个参考点上。此外还应注意合理布局,尽量缩短地线的长度,加大地线的横截面积等。
3.2 AGND和DGND连接的设计
    AGND接模拟参考点,DGND接数字电路,并与数字电源地相连接,并且AGND和DGND只在靠近ADC的引脚一处进行连接。
3.3 电源接线的设计
    多数ADC使用的不止是一种电源,通常5 V电源供数字部分使用,15 V电源供模拟部分使用。这两组电源要分别接到AGND和DGND上,同时注意这两组电源的变压器绕组之间应具有良好的绝缘和良好的静电隔离。
3.4 电源去耦的设计
    ADC的电源要加去耦电容,并且安装时电容要尽量靠近ADC的电源。一般情况下,电容可用1~10μF钽电容与0.01~0.1μF高频瓷介电容并联。
3.5 高低噪声电路接地的设计
    数字电路中的高频信号电路和大电流电路属于高噪声电路,而ADC接口中的数字信号则属于低噪声电路,因此两者应各有接地参考点。前面是地线连接时需要考虑的问题,但是在实际中各电路结构和参数的差别很大,所以一般不能采取同一模式。对于一些ADC芯片说明书中已经给出了电源和地线以及芯片评估板的印制电路布线图,使用时要按照说明书去连接,这样才能达到系统的预期指标。

4 信号隔离的设计
    从上面的分析可知,合理的布线和接地可以有效地抑制噪声干扰,但由于模拟信号和数字信号仍存在共地,所以要彻底消除数字噪声对模拟信号的影响是不可能的。此外,模拟信号在传输线上也容易受到干扰,这些干扰不仅对模拟信号有影响,对数字电路影响更大,严重时会产生运行错误。因此采取隔离措施可以进一步抑制干扰,常用的隔离元件是光电耦合器。根据隔离位置的不同,可分为2种隔离方式:一种是隔离模拟信号端;另一种是隔离数字信号端。由于数字信号的工作频率较高,所以必须采用高速光电耦合器或采取加速措施,并且在微处理器中加人等待周期或增加信号锁存器等,以协调光电耦合器引来的延迟时间,这将带来接口电路的复杂性和降低系统响应速度的负面影响。在实际应用中,由于对不同系统的技术要求各有不同,所以ADC外围电路的设计也要根据具体情况采用不同的方法。

关键字:ADC  外围电路 编辑:神话 引用地址:ADC外围电路设计方法

上一篇:∑-ΔADC(第一部分):基本拓扑
下一篇:跨导放大器实现电流模式积分单元

推荐阅读最新更新时间:2023-10-12 20:42

ADC编码PCM数据录制WAV格式音频文件
因为PCM文件直接保存采样的量化值,所以按照规定格式,先编写头,再写音频数据就可以了。 这里是录制一个6s长度的WAV音频文件,PCM格式,单声道,44.1kHz采样频率,88200的音频码率,16bit的数据,算下来的数据大小是88200*6=529.200KB。 //(数据字段包含数据的大小。如无扩展块,则值为16;有扩展块,则值为= 16 + 2字节扩展块长度 + 扩展块长度或者值为18(只有扩展块的长度为2字节,值为0) char header = {82,73,70,70, // RIFF 0x54,0x13,8,0,//FileSize-8 87,65,86,69,// WAV
[单片机]
基于ADC车载检测电路设计
  该系统可放置在汽车仪表盘位置,当司机发动汽车时,探测控制仪启动,此时发动机处于被锁状态,汽车无法启动。酒精传感器加热后,探测控制仪对酒精传感器探测的气体信号进行检测。由于酒精含量与酒精传感器检测后产生的电压信号成特定的比例关系,因而可根据电压信号进行酒精含量的判断。    酒精检测电路设计   酒精检测电路由高精度酒精传感器、信号调理放大电路、滤波电路和单片机内置12位ADC等组成,如图所示。主要功能是检测酒精含量,判断其是否超标。      图2 系统主控电路示意图   酒精传感器采用旁热型半导体式酒精气敏元件MQ3,它对乙醇蒸汽具有很高的灵敏度和良好的选择性,快速的响应恢复,长期的寿命和可靠的稳定性,探测范围为10~10
[电源管理]
基于<font color='red'>ADC</font>车载检测电路设计
ADI发布行业功耗最低18位SAR模数转换器
AD7989-1和AD7989-5 PulSAR ® 两款模数转换器为便携式应用提供低功耗、高精度解决方案。 中国,北京—Analog Devices, Inc.(NASDAQ: ADI)全球领先的高性能信号处理解决方案供应商,日前推出两款具有行业最低功耗和卓越精度的18位模数转换器AD7989-1和AD7989-5。 AD7989-1和AD7989-5 PulSAR ® 模数转换器在100 kSPS下的功耗仅为400 µW。 功耗根据吞吐速率上下调整,以解决高密度数据采集系统设计中的散热问题。 这两款模数转换器拥有+/-1 LSB和98 dB SNR(1 kHz下)特性,可提供高动态范围及出色的精度。 两款模数转换
[模拟电子]
ADI发布行业功耗最低18位SAR<font color='red'>模数转换器</font>
基于FPGA的高速数字隔离型串行ADC及应用
   1.引言   目前,逆变器在很多领域有着越来越广泛地应用。对逆变器的研究具有十分重要的意义和广阔的工程应用前景。常见逆变技术的控制方法大致分为开环控制的载波调制方法和闭环控制的跟踪控制方法。跟踪控制方法属于闭环控制,闭环反馈中的检测环节需要与高压主电路相互隔离,避免高压侧电磁噪声对控制电路的窜扰。高性能的跟踪型逆变器对反馈量的实时性要求很高,因此要求反馈环节具有高速隔离传输模拟信号的能力。   目前,最常用的隔离技术可以分为线性隔离和数字隔离。线性隔离器存在温度漂移、线性度差,鲁棒性弱的问题,很难满足宽频带高精度的隔离传输要求。在现代跟踪控制用逆变器领域中大多采用数字化控制,如果在高压侧将模拟量变成数字量,再通
[嵌入式]
基于FPGA的高速数字隔离型串行<font color='red'>ADC</font>及应用
STM32CUBEMX开发GD32F303(11)----ADC在DMA模式下扫描多个通道
概述 本章STM32CUBEMX配置STM32F103,并且在GD32F303中进行开发,同时通过GD32303C_START开发板内进行验证。 需要GD样片的可以加Q_QUN申请:6_15061293。 本章主要配置,双ADC轮询模式扫描多个通道,通过串口进行打印。 查阅手册可以得知,PA9、PA10为串口0的输出和输入口。 ADC通道配置 生成例程 这里准备了GD32303C_START开发板进行验证。 视频教学 https://www.bilibili.com/video/BV1hG41187Ah/ STM32CUBEMX配置 勾选中断。 ADC1配置。 ADCs_Common_Setti
[单片机]
STM32CUBEMX开发GD32F303(11)----<font color='red'>ADC</font>在DMA模式下扫描多个通道
AD10242型双通道高速ADC及其应用
AD10242型电路是美国ADI公司推出的高速模/数转换器(ADC)。样速度高达每秒40MHz,最一种高速度、高性能、低功耗的12位双通道模/数转换器。采用%26;#177;5.0V电源供电,其输入信号既可以是双极性也可以是单极性。片内带有跟踪/保护放大器(T/H)、基准电源和输出缓冲器。芯片内的2个通道完全独立,均有各自的译码和模拟输入,每个通道均用激光修正增益和偏移匹配,可保证2通道间串扰优于80dB。该电路无疑是小体积、高速、高集成度嵌入式处理系统的理想选择。 1 AD10242内核介绍 AD10242中的每一个通道内均集成了3个单片器件AD9632、OP279、AD9042以及多个电阻器和去耦电容器。AD10242的内部
[模拟电子]
ADC0832转换C程序
#include reg51.h #include intrins.h #define uchar unsigned char #define nop() _nop_(); sbit clk=P1^6; sbit data_i=P1^4; sbit data_o=P1^5; sbit cs=P1^2; //此程序A TO D为CH1 uchar read_adc(void) { uchar i,ch=0; cs=0; clk=1; nop(); nop(); clk=0; nop(); nop(); for (;data_o==1;) { clk=1; nop();
[单片机]
LTC6362 SAR ADC 驱动器数据表及应用电路
描述   LTC6362 是一款具轨至轨输入和输出摆幅的低功率、低噪声差分运算放大器,已专为驱动低功率 SAR ADC 进行了优化。LTC6362 在有源操作中仅吸收 1mA 的电源电流,并具有一种停机模式,在此模式中电流消耗减低至 70μA。   放大器可配置以将一个单端输入信号转换为一个差分输出信号,并能在反相或同相配置中运作。   低失调电压、低输入偏置电流和一种稳定的高阻抗配置使这款放大器不仅适合用作一个 ADC 驱动器,而且还可在靠前的信号链路中使用,以将一个精准的传感器信号转换为一个可在噪声工业环境中处理的平衡 (差分) 信号。   LTC6362 采用 8 引脚 MSOP 封装,可在-40℃至
[模拟电子]
LTC6362 SAR <font color='red'>ADC</font> 驱动器数据表及应用电路
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved