鉴频鉴相器的指标对锁相环死区及抖动性能的影

最新更新时间:2012-12-08来源: 互联网关键字:鉴频  鉴相器  锁相环  抖动性能 手机看文章 扫描二维码
随时随地手机看文章
该应用笔记讨论了鉴频鉴相器的指标对锁相环(PLL)死区及抖动性能的影响。在使用电荷泵环路滤波的PLL设计中,通过产生具有最小脉宽的鉴相输出脉冲,可以减轻PLL的死区效应和相关的锁相环抖动。

  MAX9382是一款鉴相/鉴频器,用于基于电荷泵的环路滤波架构。MAX9382的关键参数之一是确保最短脉冲宽度,以消除电荷泵环路滤波设计中通常出现的死区效应。MAX9382把输入的相位差转换为可变脉宽的两路脉冲输出,这些输出为“上”、“下”端的脉冲信号,用来控制环路滤波电荷泵。当两个输入频率不同时,MAX9382如同一个鉴频器,其输出时间平均值是输入频率差的函数。这种转换大大改善了环路锁定带外信号的能力。图1给出了MAX9382的内部框图,图2给出了MAX9382输出平均(直流)电压值与输入相位差之间的函数关系。式1、式2和式3说明当输入频率相同时(环路锁定条件下)和输入频率不同时(环路失锁条件下)鉴相/鉴频器的传输函数。

  

图1. MAX9382鉴频/鉴相器

 

  图1. MAX9382鉴频/鉴相器

  

图2. MAX9382鉴频/鉴相器理想状态下的响应

 

  图2. MAX9382鉴频/鉴相器理想状态下的响应

  基于电荷泵的环路滤波

  图3给出了一个典型的电荷泵和无源环路滤波架构。这个架构利用开关选通匹配的电流源出和电流吸入,控制电流流入或流出环路滤波器。根据鉴相器输入的相差在“上”、“下”输出端产生不同脉宽的脉冲,使环路滤波器电压上升或下降。锁定条件下,鉴相器在电荷泵的两个输入产生一串相同脉宽(最小脉宽)的脉冲信号,式4和式5给出了电荷泵滤波器的传输函数和环路滤波网络的阻抗。

  

图3. 电荷泵和环路滤波器原理图

 

  图3. 电荷泵和环路滤波器原理图

  完整的锁相环(PLL)

  图4给出了一个完整的锁相环框图,由鉴相器、电荷泵、环路滤波器、VCO和反馈分频器(需要时)构成。式6给出了基本的环路传输函数,式7为锁定条件下完整的环路传输函数。式1至式7是在不同环路元件下通过线性响应推导出来的公式,没有考虑鉴相器和电荷泵的取样特性。

  

图4. 锁相环的基本单元

 

  图4. 锁相环的基本单元

  PLL抖动和频率响应

  消除死区效应

  基于电荷泵架构锁相环的潜在缺点是:滤波器输入能够响应的最小脉冲宽度受限。锁相条件下,典型的鉴相器输出是“上”、“下”输出一串非常短的脉冲。如果这些脉冲对于环路滤波器来说太窄,将会产生零相位附近的环路死区效应。这种死区效应将导致相位偏移、增大锁相输出时钟的抖动。有些系统会特别引入一定的相位偏移,使鉴相器输出远离死锁区域。MAX9382通过定义适当的最短“上”、“下”输出脉冲避免死区效应。图5显示了当VCO信号(V)超前于参考输入信号(R)时,MAX9382的输入、输出时序,这种情况下,鉴相器在其“上”端(U)输出一串窄脉冲,在“下”端(D)输出一串宽脉冲。“上”、“下”输出脉冲宽度之差即为所需要的V、R输入跳变时间差。

  

图5. V超前于R时MAX9382的输入和输出时序

 

  图5. V超前于R时MAX9382的输入和输出时序

  避免死区效应的最小脉冲宽度主要由电荷泵的最小输入脉冲宽度和鉴相器输出脉冲的上升、下降特性决定。式8用于计算最小脉冲宽度的近似值。MAX9382指标确保370ps的最小输出脉宽和最大190ps的输出上升/下降时间。通过式8计算特定环路滤波器的最小输入脉冲宽度,所得结果为360ps。任何最小输入脉冲宽度低于该值的环路滤波器即可与MAX9382配合使用,构成没有死区效应的环路。

  图6阐述了环路相位响应大约为零、最小脉冲宽度过小时的影响。图中显示了两种响应曲线,环路滤波器均工作在100MHz,要求200ps的输入脉冲宽度,鉴相器输出的上升、下降时间为190ps。第一个响应为鉴相器最小输出脉冲宽度近似为0ps的情况,第二个响应为鉴相器满足最小输出脉冲宽度条件的情况(本例中,MAX9382的最小脉宽为370ps)。

  

图6. 鉴相器输出脉冲宽度为370ps和0.0ps时环路死区效应比较

 

  图6. 鉴相器输出脉冲宽度为370ps和0.0ps时环路死区效应比较

  最大工作频率

  MAX9382数据资料给出了在可用输入相位范围±π情况下,典型的最大工作频率为450MHz。具体应用中,最大工作频率由器件的内部传输延时和可用输入相位范围决定。内部复位脉冲用于控制最小输出脉冲宽度。如果在收到下一个有效输入沿时该复位脉冲有效,鉴相电路将错过这个输入沿。这个复位脉冲的持续时间并没有在MAX9382数据资料中规定,但它的有效值可以根据输入、输出延时推算出来。例如,“V”输入超前“R”输入时,当“D”输出的下降沿与“V”输入的上升沿对齐时,达到输入相位范围的限制;对于“R”输入超前于“V”输入的情况,在“R”输入和“U”输出之间会发生类似情形。式9给出了“V”超前“R”时最大输入相位的近似表达式。图7给出了对应的时序图。同样可以给出“R”超前于“V”情况下的表达式和波形。

  

图7. 器件时序特性给出最大可用的相位限制

 

  图7. 器件时序特性给出最大可用的相位限制

  图7所示时序图描述了最大相位条件下的输入、输出波形。进一步增大超前输入相位,将导致随后的“V”输入上升沿被忽略,输出复位至差分低电平状态。鉴相器将响应接下来的输入上升沿,并将其作为超前波形。图7示例中,后续的边沿会出现在“R”输入,鉴相器响应是针对“R”超前“V”的条件得出的。

公式列表

  式1、式2和式3给出了输入频率相同条件下(锁定条件)和输入频率不同条件下(对应于fV > fR、fV < fR)鉴相/鉴频器的传输函数。

  

 

  其中:

  输出(Output) = 鉴相输出

  KP = 鉴相增益

  ΘR = 参考信号相位

  ΘV = 反馈信号相位

  

 

  其中:

  KF = 鉴频增益

  fR = 参考信号频率

  fV = 反馈信号频率

  

 

  式4和式5给出了电荷泵和环路滤波器的传输函数。

  

 

  其中:

  OUT = 滤波器输出

  A = 增益(跨导)

  ZFILTER = 滤波网络阻抗

  ΔT/T = “上”、“下”输入占空比

  

 

  其中:

  T1、T2、T3 = 与环路滤波元件有关的时间常数

  式6为基本的环路传输函数。

  

 

  其中:

  FOUT = 环路输出

  R = 环路输入

  n = 反馈环路分频比

  K1 = 鉴相传输增益

  K0 = VCO传输增益

  A = 电荷泵增益

  F(s) = 环路滤波器传输函数

  s = jω

  式7为环路锁定条件下完整的环路传输函数。

  

 

  式8为避免死区效应的最小脉冲宽度近似值。

  

 

  其中:

  PulseMIN = 鉴相器输出要求的最小脉冲宽度

  tF = 鉴相器输出下降时间(20%到80%)

  tR = 鉴相器输出上升时间(20%到80%)

  tL = 环路滤波最小输入脉冲宽度

  式9给出了最大输入相位范围与工作频率和鉴相器时延的函数关系。

  

 

  其中:

  ΘMAX = 最大输入相位

  tpRD = 从R输入到D输出的传输时延

  F0 = 工作频率

关键字:鉴频  鉴相器  锁相环  抖动性能 编辑:神话 引用地址:鉴频鉴相器的指标对锁相环死区及抖动性能的影

上一篇:选频放大器设计
下一篇:初识霍尔传感器应用

推荐阅读最新更新时间:2023-10-12 20:44

基于80C196的采样与A/D处理
   介质损耗仪是一种测试高压绝缘体性能状况的仪器,原理为从标准通道取得的电信号与被试通道取得的电信号相比较、分析与处理来得出被试体的绝缘状况。被试体可等效为电阻与电容的并联。图1为原理结构图。在分析处理中,需要得出精确的两个通道信号的大小,  和求出两通道信号的相角之差。由于采样环境恶劣与对采样精度的高要求,采样设计应注意:一:采用高的采样频率,拓宽原始信号的频域,保证原始信号的最小失真的采样;二:为克服采样的坏环境和得到高精度的 A/D转换量化值,应选用高精度与高线性度的A/D转换芯片;三:为保证相角差的测量,两个通道应同时开始采样;三DFT处理:为了对采样来的离散点信号进行快速傅立叶变换,采样的时间段为一个周期。在实时采样中
[单片机]
基于80C196的采样与A/D处理
LPC1768之时钟
一锁相环和CPU时钟。 CPU时钟=锁相环0输出/CPU时钟配置寄存器的预分频值即:Fcpu=Fcco/CCLKCFG+1。锁相环可以把外部时钟倍频到较高频率,PLL0输出频率是: Fcco = (2xMxFin)/N; M=MSEL0+1,N=NSEL0+1。MSEL0和NSEL0分别是PLL0CFG_Val 的低字和高字。N值得取值范围是1~32,而M的取值是在较高的振荡器频率下(超过1MHz)允许范围是6~512。 得到PLL0输出值之后,在经过CPU时钟配置寄存器就可以得到CPU时钟。 在这个system_lpc17xx.c文件中,修改#define PLL0CFG_Val 0x00050063的宏定义值就可以了
[单片机]
基于定点DSP的软件锁相环的设计和实现
摘要:软件锁相环是软件接收机中执行载波恢复功能的关键部分。提出了一种48位定点扩展精度的算法,可以有效地实现软件锁相环。与浮点算法比较,能极大地降低DSP的运算量,降低功耗,同时保证动态范围运算精度。 关键词:低轨道卫星 软件接收机 软件锁相环 定点扩展精度算法 低轨小卫星通信是近年来卫星通信应用中一个方兴未艾的重要领域,"创新一号"小卫星是我国研制的具有完全自主知识产权的存储与转发通信小卫星,cascom手持终端是专门为这颗小卫星研制的低功耗地面手持通信终端,支持调制数据速率达76.8kbps的BPSK窄带信道。基于TI公司的低功耗16位定点数字信号处理器TMS320VC5510(最高运算能力为200MIPS),完全用软件实
[应用]
低噪声12 GHz微波小数N分频锁相环设计
电路功能与优势 该电路是低噪声微波小数N分频PLL的完整实现方案,以 ADF4156 作为核心的小数N分频PLL器件。使用 ADF5001 外部预分频器将PLL频率范围扩展至18 GHz。采用具有适当偏置和滤波的超低噪声 OP184 运算放大器驱动微波VCO,在12 GHz下可实现完全低噪声PLL,经测量积分相位噪声为0.35 ps rms。该功能通常用于产生本振频率(LO),适用于微波点对点系统、测试与测量设备、汽车雷达等应用和军事应用。 图1. 低噪声微波小数N分频PLL(简化示意图:未显示去耦和所有连接) 电路描述 图1显示的是电路的框图。该电路选择了Synergy Microw
[模拟电子]
应用LMX2370设计双锁相环频率合成器
    摘要: 介绍了美国国家半导体公司新推出的低功耗单片双锁相环芯片LMX2370的结构、原理、特点,给出了LMX2370在V/UHF航空电台频率合成器中的应用实例。     关键词: 锁相环  频率合成器  通信 1 LMX2370简介 LMX2370是美国国家半导体公司新推出的高性能、低功耗、双锁相环芯片,其主要特点有:宽工作电压2.7~5.5V;超低功耗(6mA);低相位噪声层;双模前置分频比可编程(主环P=32/33或16/17,副环P=16/17或8/9);工作频率高,主环达2.5GHz(P=32/33)或1.2GHz(P=16/17),副环达1.2GHz(P=16/17)或550MHz(
[应用]
改进型CMOS电荷泵锁相环电路的应用设计
本文设计了一种宽频率范围的CMOS锁相环(PLL)电路,通过提高电荷泵电路的电流镜镜像精度和增加开关噪声抵消电路,有效地改善了传统电路中由于电流失配、电荷共享、时钟馈通等导致的相位偏差问题。 设计了一种倍频控制单元,通过编程锁频倍数和压控振荡器延迟单元的跨导,有效扩展了锁相环的锁频范围。该电路基于Dongbu HiTek 0.18μm CMOS工艺设计,仿真结果表明,在1.8 V的工作电压下,电荷泵电路输出电压在0.25~1.5 V变化时,电荷泵的充放电电流一致性保持很好,在100 MHz~2.2 GHz的输出频率内,频率捕获时间小于2μs,稳态相对相位误差小于0.6%. 锁相环(phase-locked loop,PLL)是一个
[电源管理]
改进型CMOS电荷泵<font color='red'>锁相环</font>电路的应用设计
使用PLD内部锁相环解决系统设计难题
摘要:从整个应用系统的角度,理解和分析PLD内部锁相环;在此基础上,深入剖析锁相环的相移结构,同时用这个技术解决系统设计难题。 关键词:PLD 内嵌锁相环 FIFO XBUS 引言 微电子技术的发展趋势是片上系统(SoC),也就是在一块芯片上实现整个系统,包括模拟部分和数字部分。作为IC产业中重要的一个分支,可编程逻辑器件(PLD)也在努力向这个方向发展。无论是Xilinx还是Altera,它们最新的PLD产品中都集成了诸如PCI接口、乘法器、MCU核以及DSP核等部件,有的甚至集成了完整的微处理器。例如,Xlinux的Vietex2-Pro系列就是集成了PowerPC微处理器。 锁相环技术是模拟集成电路设计中一个重要的
[半导体设计/制造]
MC145152+MC1648+MC12022锁相环的制作
最近制作了一个锁相环,用于产生大概65MHZ~73MHZ的振荡频率。由于MC12022的最高输入频率可以达到1GHZ,而MC1648的最高振荡频率是225MHZ,所以本锁相环修改参数最高可以达到225MHZ的输出,当然也可以另外自己使用晶体管搭建振荡频率更高的VCO。有了这个基础,以后在制作无线电发射机,接收机的时候,就可以选择任意频率,稳定性会比LC振荡器高。 制作前必须查看各个芯片的datasheet,要对芯片有基本的理解。以下所列出的电路图的参数都是实际制作的参数,一般来说,不需要改动任何的参数,直接做出来就可以工作,VCO里面电感是自己绕制的,没有具体的电感参数。下面是各个部分的电路:
[单片机]
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved