常用功率器件MOSFET的基础知识介绍

最新更新时间:2013-02-24来源: 互联网关键字:功率器件  MOSFET 手机看文章 扫描二维码
随时随地手机看文章
我们都懂得如何利用二极管来实现开关,但是,我们只能对其进行开关操作,而不能逐渐控制信号流。此外,二极管作为开关取决于信号流的方向;我们不能对其编程以通过或屏蔽一个信号。对于诸如“流控制”或可编程开关之类的应用,我们需要一种三端器件和双极型三极管。我们都听说过Bardeen & Brattain,是他们偶然之间发明了三极管,就像许多其它伟大的发现一样。

  结构上,它由两个背靠背的结实现(这不是一笔大交易,早在Bardeen之前,我们可能就是采用相同的结构实现了共阴极),但是,在功能上它是完全不同的器件,就像一个控制发射极电流流动的“龙头”—操作龙头的“手”就是基极电流。双极型三极管因此就是电流受控的器件。

  场效应三极管(FET)尽管结构上不同,但是,提供相同的“龙头”功能。差异在于:FET是电压受控器件;你不需要基极电流,而是要用电压实施电流控制。双极型三极管诞生于1947年,不久之后一对杰出的父子Shockley和Pearson就发明了(至少是概念)FET。为了与较早出现的双极型“孪生兄弟”相区别,FET的三个电极分别被称为漏极、栅极和源极,对应的三极管的三个电极分别是集电极、基极和发射极。FET有两个主要变种,它们针对不同类型的应用做了最优化。JFET(结型FET)被用于小信号处理,而MOSFET(金属氧化物半导体FET)主要被用于线性或开关电源应用。

  他们为什么要发明功率MOSFET?

  当把双极型三极管按照比例提高到功率应用的时候,它显露出一些恼人的局限性。确实,你仍然可以在洗衣机、空调机和电冰箱中找到它们的踪影,但是,对我们这些能够忍受一定程度的家用电器低效能的一般消费者来说,这些应用都是低功率应用。在一些UPS、电机控制或焊接机器人中仍然采用双极型三极管,但是,它们的用途实际上被限制到小于10KHz的应用,并且在整体效率成为关键参数的技术前沿应用中,它们正加速退出。

  作为双极型器件,三极管依赖于被注入到基极的少数载流子来“击败”(电子和空穴)复合并被再次注入集电极。为了维持大的集电极电流,我们要从发射极一侧把电流注入基极,如果可能的话,在基极/集电极的边界恢复所有的电流(意味着在基极的复合要保持为最小)。

  但是,这意味着当我们想要三极管打开的时候,在基极中存在复合因子低的大量少数载流子,开关在闭合之前要对它们进行处理,换言之,与所有少数载流子器件相关的存储电荷问题限制了最大工作速度。FET的主要优势目前带来了一线曙光:作为多数载流子器件,不存在已存储的少数电荷问题,因此,其工作频率要高得多。MOSFET的开关延迟特性完全是因为寄生电容的充电和放电。

  人们可能会说:在高频应用中需要开关速度快的MOSFET,但是,在我的速度相对较低的电路中,为什么要采用这种器件?答案是直截了当的:改善效率。该器件在开关状态的持续时间间隔期间,既具有大电流,又具有高电压;由于器件的工作速度更快,所以,所损耗的能量就较少。在许多应用中,仅仅这个优势就足以补偿较高电压MOSFET存在的导通损耗稍高的问题,例如,如果不用它的话,频率为150KHz以上的开关模式电源(SMPS)根本就无法实现。

  双极型三极管受电流驱动,实际上,因为增益(集电极和基极电流之比)随集电极电流(IC)的增加而大幅度降低,我们要驱动的电流越大,则我们需要提供给基极的电流也越大。一个结果使双极型三极管开始消耗大量的控制功率,从而降低了整个电路的效率。

  使事情更糟糕的是:这种缺点在工作温度更高的情况下会加重。另外一个结果是需要能够快速泵出和吸收电流的相当复杂的基极驱动电路。相比之下,(MOS)FET这种器件在栅极实际上消耗的电流为零;甚至在125°C的典型栅极电流都小于100nA。一旦寄生电容被充电,由驱动电路提供的泄漏电流就非常低。此外,用电压驱动比用电流驱动的电路简单,这正是(MOS)FET为什么对设计工程师如此有吸引力的另外一个原因。

  另一方面,其主要优点是不存在二次损坏机制。如果尝试用双极型三极管来阻塞大量的功率,在任何半导体结构中的不可避免的本地缺陷将扮演聚集电流的作用,结果将局部加热硅片。因为电阻的温度系数是负的,本地缺陷将起到低阻电流路径的作用,导致流入它的电流更多,自身发热越来越多,最终出现不可逆转的破坏。相比之下,MOSFET具有正的电阻热系数。

  另一方面,随着温度的升高,RDS(on)增加的劣势可以被感察觉到,由于载子移动性在25°C和125°C之间降低,这个重要的参数大概要翻番。再一方面,这同一个现象带来了巨大的优势:任何试图像上述那样发生作用的缺陷实际上都会从它分流—我们将看到的是“冷却点”而不是对双极器件的“热点”特性!这种自冷却机制的同等重要的结果是便于并联MOSFET以提升某种器件的电流性能。

  双极型三极管对于并联非常敏感,要采取预防措施以平分电流(发射极稳定电阻、快速响应电流感应反馈环路),否则,具有最低饱和电压的器件会转移大部分的电流,从而出现上述的过热并最终导致短路。

  要注意MOSFET,除了设计保险的对称电路和平衡栅极之外,它们不需要其它措施就可以被并联起来,所以,它们同等地打开,让所有的三极管中流过相同大小的电流。此外,好处还在于如果栅极没有获得平衡,并且沟道打开的程度不同,这仍然会导致稳态条件下存在一定的漏极电流,并且比其它的要稍大。

  对设计工程师有吸引力的一个有用功能是MOSFET具有独特的结构:在源极和漏极之间存在“寄生”体二极管。尽管它没有对快速开关或低导通损耗进行最优化,在电感负载开关应用中,它不需要增加额外的成本就起到了箝位二极管的作用。

  MOSFET结构

  JFET的基本想法(图1)是通过调节(夹断)漏-源沟道之间的截面积来控制流过从源极到漏极的电流。利用反相偏置的结作为栅极可以实现这一点;其(反相)电压调节耗尽区,结果夹断沟道,并通过减少其截面积来提高它的电阻。由于栅极没有施加电压,沟道的电阻数值最低,并且流过器件的漏极电流最大。随着栅极电压的增加,两个耗尽区的开头前进,通过提高沟道电阻降低了漏极电流,直到两个耗尽区的开头相遇时才会出现总的夹断。

  

  图1:JFET结构。

  MOSFET利用不同类型的栅极结构开发了MOS电容的特性。通过改变施加在MOS结构的顶端电极的偏置的数值和极性,你可以全程驱动它下面的芯片直到反转。图2显示了一个N沟道MOSFET的简化结构,人们称之为垂直、双扩散结构,它以高度浓缩的n型衬底开始,以最小化沟道部分的体电阻。

  在它上面要生长了一层n-epi,并制成了两个连续的扩散区,p区中合适的偏置将产生沟道,而在它里面扩散出的n+区定义了源极。下一步,在形成磷掺杂多晶硅之后,要生长薄的高品质栅极氧化层,从而形成栅极。要在定义源极和栅电极的顶层上开接触窗口,与此同时,整个晶圆的底层使漏极接触。由于在栅极上没有偏置,n+源和n漏被p区分隔,并且没有电流流过(三极管被关闭)。

  如果向栅极施加正偏置,在p区中的少数载流子(电子)就被吸引到栅极板下面的表面。随着偏置电压的增加,越来越多的电子被禁闭在这块小空间之中,本地的“少子”集中比空穴(p)集中还要多,从而出现“反转”(意味着栅极下面的材料立即从p型变成n型)。现在,在把源极连接到漏极的栅结构的下面的p型材料中形成了n“沟道”;电流可以流过。就像在JFET(尽管物理现象不同)中的情形一样,栅极(依靠其电压偏置)控制源极和漏极之间的电流。

  

  图2:MOSFET结构和符号。

  MOSFET制造商很多,几乎每一家制造商都有其工艺优化和商标。IR是HEXFET先锋,摩托罗拉构建了TMOS,Ixys制成了HiPerFET和MegaMOS,西门子拥有SIPMOS家族的功率三极管,而Advanced Power Technology拥有Power MOS IV技术,不一而足。不论工艺被称为VMOS、TMOS或DMOS,它都具有水平的栅结构且电流垂直流过栅极。

  功率MOSFET的特别之处在于:包含像图2中并行连接所描述的那样的多个“单元”的结构。具有相同RDS(on)电阻的MOSFET并联,其等效电阻为一个MOSFET单元的RDS(on)的1/n。裸片面积越大,其导通电阻就越低,但是,与此同时,寄生电容就越大,因此,其开关性能就越差。

  如果一切都是如此严格成正比且可以预测的话,有什么改进的办法吗?是的,其思路就是最小化(调低)基本单元的面积,这样在相同的占位空间中可以集成更多的单元,从而使RDS(on)下降,并维持电容不变。为了成功地改良每一代MOSFET产品,有必要持续地进行技术改良并改进晶体圆制造工艺(更出色的线蚀刻、更好的受控灌注等等)。

  但是,持续不断地努力开发更好的工艺技术不是改良MOSFET的唯一途径;概念设计的变革可能会极大地提高性能。这样的突破就是飞利浦去年11月宣布:开发成功TrenchMOS工艺。其栅结构不是与裸片表面平行,现在是构建在沟道之中,垂直于表面,因此,占用的空间较少并且使电流的流动真正是垂直的(见图3)。在RDS(on)相同的情况下,飞利浦的三极管把面积减少了50%;或者,在相同的电流处理能力下,把面积减少了35%。

  

  图3:Trench MOS结构。

  本文小结

  我们把MOSFET与更为著名、更为常用的双极型三极管进行了比较,我们看到MOSFET比BJT所具备的主要优势,我们现在也意识到一些折衷。最重要的结论在于:整个电路的效率是由具体应用决定的;工程师要在所有的工作条件下仔细地评估传导和开关损耗的平衡,然后,决定所要使用的器件是常规的双极型、MOSFET或可能是IGBT?

关键字:功率器件  MOSFET 编辑:神话 引用地址:常用功率器件MOSFET的基础知识介绍

上一篇:飞兆半导体推出具有高可靠性和卓越开关性能IGBT
下一篇:意法半导体与Soundchip携手推出麦克风芯片,打造炫酷的智能高清音频配件

推荐阅读最新更新时间:2023-10-12 20:44

开关电源中功率MOSFET的驱动技术荟萃
  功率MOSFET以其导通电阻低和负载电流大的突出优点,已经成为开关电源(switch-mode Power supplies,SMPS)整流组件的最佳选择,专用MOSFET驱动器的出现又为优化SMPS控制器带来了契机。那些与SMPS控制器集成在一起的驱动器只适用于电路简单、输出电流小的产品;而那些用分立的有源或无源器件搭成的驱动电路既不能满足对高性能的要求,也无法获得专用单片式驱动器件的成本优势。专用驱动器的脉冲上升延时、下降延时和传播延迟都很短暂,电路种类也非常齐全,可以满足各类产品的设计需要。    大电流MOSFET栅极驱动器   为中间总线架构(IBA)系统的优化的POL DC-DC转换器、Intel及AM
[电源管理]
功率MOSFET驱动技术详解
功率MOSFET具有导通电阻低、负载电流大的优点,因而非常适合用作开关电源(switch-mode powersupplies,SMPS)的整流组件,不过,在选用MOSFET时有一些注意事项。功率MOSFET和双极型晶体管不同,它的栅极电容比较大,在导通之前要先对该电容充电,当电容电压超过阈值电压(VGS-TH)时MOSFET才开始导通。因此,栅极驱动器的负载能力必须足够大,以保证在系统要求的时间内完成对等效栅极电容(CEI)的充电。在计算栅极驱动电流时,最常犯的一个错误就是将MOSFET的输入电容(CISS)和CEI混为一谈,于是会使用下面这个公式去计算峰值栅极电流。   I = C(dv/dt)   实际上,CEI的值
[电源管理]
功率<font color='red'>MOSFET</font>驱动技术详解
经初级端进行精准控制的高效率充电器电源
  初级端调节控制器(Primary Side Regulation, PSR)不需要次级端的反馈线路便可在初级端精准地控制充电器输出的CV/CC,实现省电、高效率和低成本的电源。这种 PSR 不仅包含了跳频 机制来降低 EMI,更包括了省电模式降低待机时的电源消耗。   图1为采用初级端调节控制的反激式转换器设计范例。PSR 控制器为了获得次级端输出电压的信息,采用独特的方式侦测变压器辅助绕组上的波形,以获得次级端的输出信息进行反馈控制。图2所示为主要的工作波形。 图1,  采用PSR控制的返驰式转换器电路图 图 2, 控制器的输出波形   对于采用 PSR 控制器的反激式 (flyback) 转换器工作
[电源管理]
功率MOSFET降压型调节器MAX8505
MAX8505 降压型调节器 工作在2.6V至5.5V输入电压范围内,产生0.8V至0.85 x VIN的可调输出电压,电流可达3A。在外加2.6V至5.5V的偏置电源时,输入电压最低可达2.25V。   MAX8505集成了 功率MOSFET ,工作于1MHz/500kHz开关频率,以提供紧凑的设计。电流模式脉宽调制(PWM)控制功能简化了采用陶瓷电容或聚合物输出电容的补偿,并提供极好的瞬态响应。   MAX8505在整个负载、输入电源和温度范围内具有1%的精确输出。通过外部电容实现可调的软启动功能。在软启动期间,电压调节回路工作。当有源器件,如微处理器或是ASIC连接到MAX8505的输出,一旦超过其低压门限时将
[电源管理]
ADI 旗下凌力尔特推出高压侧 N 沟道 MOSFET 驱动器 LTC700
电子网消息,亚德诺半导体 ( ADI ) 旗下凌力尔特公司 ( Linear ) 推出高速、高压侧 N 沟道 MOSFET 驱动器 LTC7004,该器件用高达 60V 的电源电压运行。其内部充电泵全面增强了外部 N 沟道 MOSFET 开关,从而使该器件能够保持接通时间无限长。LTC7004 强大的 1Ω 栅极驱动器能够以非常短的转换时间和 35ns 传播延迟,容易地驱动栅极电容很大的 MOSFET,非常适合高频开关和静态开关应用。 LTC7004 可用来接收以地为基准的低压数字输入信号,并快速驱动一个漏极可以在 0V 至 60V (65V 绝对最大值) 的高压侧 N 沟道功率 MOSFET。LTC7004 在 3.5
[半导体设计/制造]
Diodes 100V MOSFET H桥采用5mm x 4.5mm封装能有效节省占位面积
Diodes公司 (Diodes Incorporated) 新推出的100V全H桥DMHC10H170SFJ,把双N通道及P通道 MOSFET集成到微型DFN5045封装 (5mm x 4.5mm)。这种配置可减少元件数量以及节省电路板空间,另外对要求配备多种器件的应用尤为重要,包括一系列工业检测系统或海事声呐设备内的超声波换能器。其它常见的应用有48V电信设备散热风扇的直流驱动电机,以及无线充电板线圈等电感负载。 DMHC10H170SFJ具有100V漏源极击穿电压 (BVDSS),提供充足的净空以支持48V电信轨和工业应用。它还配备5V的栅极电压,以简化微控制器的直接逻辑电平接口之设计。该器件的峰值
[电源管理]
Diodes 100V <font color='red'>MOSFET</font> H桥采用5mm x 4.5mm封装能有效节省占位面积
SiC MOSFET驱动电压测试结果离谱的六大原因
开关特性是功率半导体开关器件最重要的特性之一 ,由器件在开关过程中的驱动电压、端电压、端电流表示。一般在进行器件评估时可以采用双脉冲测试,而在电路设计时直接测量在运行中的变换器上的器件波形,为了得到正确的结论,获得精准的开关过程波形至关重要。 SiC MOSFET 相较于 Si MOS 和 IGBT 能够显著提高变换器的效率和功率密度,同时还能够降低系统成本,受到广大电源工程师的青睐,越来越多的功率变换器采用基于 SiC MOSFET 的方案。SiC MOSFET 与 Si 开关器件的一个重要区别是它们的栅极耐压能力不同,Si 开关器件栅极耐压能力一般都能够达到 ±30V,而 SiC MOSFET 栅 极 正 压 耐 压 能
[测试测量]
SiC <font color='red'>MOSFET</font>驱动电压测试结果离谱的六大原因
车规级功率器件可靠性测试难点及应用场景
车规级功率器件未来发展趋势 材料方面: SiC和GaN是必然趋势,GaAs在细分领域有可能 ●封装方面:高功率密度、高可靠性和定制化 ●评测方面:多应力综合测试方法、新型结温测试方法和技术 ●进展方面:国产在赶超进口(参数和性能),可靠性还需要时间沉淀 车规级功率器件未来发展趋势 ●PC+HV-H3TRB全 耦合 作用测试,非单向耦合,世界首次 -高温、高湿、 高压 和大电流综合作用下的 高精度 测量 -重点考核车规级器件在全耦合作用应力下的可靠性
[嵌入式]
车规级<font color='red'>功率器件</font>可靠性测试难点及应用场景
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved