基于SST25VF020的数据存储系统设计

最新更新时间:2013-05-21来源: 互联网关键字:SST25VF020  数据存储  系统设计 手机看文章 扫描二维码
随时随地手机看文章
前言

  近年来,闪速存储器已应用在数以千计的产品中,特别是移动通信、MP3音乐播放器、手持PC管理器、数码相机、网络路由器、舱内录音机等工业产品。闪速存储器由于具有非易失性和电可编程擦除性,从而具有半导体存储器的读取速度快、存储容量大等优点,同时又克服了DRAM及SRAM断电丢失所存数据的缺陷。与EPROM相比较,闪速存储器的优势在于系统电可擦除和可重复编程,且不需要特殊的高电压,此外,它还有成本低,密度大的特点。

  闪速存储器由于各自技术架构的不同,又可分为NOR技术、NAND技术、AND技术和由EEPROM派生的闪速存储器。以EEPROM做闪速存储阵列的Flash Memory,如SST的小扇区结构闪速存储器具有EEPROM与NOR技术Flash Memory二者折中的性能特点:(1)读写的灵活性逊于EEPROM,但与NOR技术Flash Memory的块结构相比,其页尺寸小,具有快速随机读取和快编程、快擦除的特点。(2)与EEPROM比较,具有明显的成本优势。

  SST25VF系列产品,是业界第一个完整的串行闪存产品系列,其记忆容量包含512Kbit至16Mbit,且采用产业标准的8接脚SOIC封装及超薄型WSON封装技术。此外,SST最新串行闪存提供最新自动地址增值(AAI)资料写入模式,与单一字节资料写入模式相比,该资料写入模式能够将整个闪存的资料写入时间减少50%。SST25VF系列是以高效能超快闪技术为基础,加上四线及串行外围界面(SPI),相对平行EEPROM等非挥发性内存解决方案而言,SST的串行式闪存产品使用较少的接脚,将资料往返于系统CPU,因此可减少电路板空间、耗能及成本。

  芯片介绍

  芯片引脚介绍

  SST25VF020是SST25VF系列产品中的一员,其芯片具有以下特点:总容量为2M;单电源读和写操作,工作电压为2.7-3.3V;低功耗,工作电流为7mA,等待电流为3μA;时钟频率高达33MHz,快速编程、快速擦除、快速读取;小型一致闪区尺寸4KB;数据保存100年;CMOS I/O兼容等。

  状态寄存器

  状态寄存器用来对芯片的工作模式进行设定,在工作过程中,可以提供芯片的工作状态,比如读、写、写保护等。

  工作过程

  首先设置状态寄存器,对FLASH的工作模式、写使能以及写保护区域进行设定。在读写的过程中,还可以通过读寄存器内容来判断FLASH当前的工作状态。设定结束后,可以开始读写操作。

  写操作

  选用自动地址增值写入(AAI)模式,这种模式在写入大量数据时可以缩短程序运行时间。在写操作中,首先写入写使能命令字(0x06),AAI模式以AF为写命令,顺序写入存储起始地址和存储数据,每传送完一字节的数据时,时钟位置高,为写下一字节数据做准备。当数据全部写入时,写终止写使能命令字(0x04),写操作结束。在整个写过程中,状态寄存器中的BUSY位始终为1,写操作结束后,BUSY自动复位。

  读操作

  在读操作中,首先写入读命令字(0x03),然后写入读取数据的起始地址,数据会顺序读出,直至读完。如果地址累加至7FFFF,下次数据读取会从00000地址开始。在整个读过程中,状态寄存器中的BUSY位始终为1,写操作结束后,BUSY自动复位。

  擦除操作

  SST25VF020提供3种芯片擦除方式:扇区擦除、块擦除和全擦除。命令字分别为0x20、0x52、0x60,可分别实现不同范围的擦除。在整个擦除过程中,状态寄存器中的BUSY位始终为1,擦除操作结束后,BUSY自动复位。

  硬件电路

  系统控制器选用MSP430F149单片机,对温度传感器信号进行模数转换后采样,将采集到的数据通过SPI串行通信存储到FLASH中。当系统通过异步串口和PC机相连时,通过SPI串行通信将储存到FLASH中的数据读到PC机中,从而对采集的数据进行分析、处理。将采集到的数据保存后,即可擦除FLASH,为下一次采集做准备。存储电路连接如图4所示。通过上拉电阻将CE#、SO端的初始状态置为高电平,写保护端始终为高电平。相应的输入输出端、时钟信号端和使能端分别和单片机接口相连。

  关键源程序

  case 0x03: /* 读数据 */

  TXBUF1 =0x03; // 发读命令字

  while (IFG2&0x20==0x00); // 发送完否?

  for(i=0;i《=2;i++) /* 发送地址 */

  {TXBUF1=addr[i];

  while (IFG2&0x20==0x00);}//发送完否?

  for(i=0;i《=19;i++) /* 读取数据 */

  { TXBUF1=0X33 ; // 发送伪数据用于产生接收数据CLK

  while (IFG2&0x20==0x00); // 发送完否?

  while( IFG2&0x10==0x00) ;

  backdata1[i]=RXBUF1 ;} //存放读取的数据

  delay(2) ;

  P5OUT |=0X01 ; // 拉高 STE1

  delay(200) ;

  break;

  case 0xaf: /* AAI 模式 写数据 */

  P5OUT &=~0X01 ; // 拉 底 STE1

  delay(2) ;

  TXBUF1 =0X06 ; /* write enable */

  while (IFG2&0x20==0x00); // 发送完否?

  delay(2) ;

  P5OUT |=0x01 ; // 拉高 STE1

  delay(12);

  P5OUT &=~0x01 ; // 拉底 STE1

  delay(2) ;

  TXBUF1 =0xaf; // 发写命令字

  while (IFG2&0x20==0x00); // 发送完否?

  for(i=0;i《=2;i++) /* 发送地址 */

  { TXBUF1=addr[i];

  while (IFG2&0x20==0x00); }//发送完否?

  for(i=0;i《=19;i++)

  { TXBUF1=data1[i] ; // 连续写20字节的数据

  while (IFG2&0x20==0x00) ; // 发送完否?

  if(i==19) break ;

  delay(2) ;

  P5OUT |=0X01 ; // 拉高 STE1

  delay(12) ;

  P5OUT &=~0X01 ; // 拉底 STE1

  delay(2) ;

  TXBUF1 =0xaf ;

  while (IFG2&0x20==0x00); } // 发送完否?

  delay(2) ;

  P5OUT |=0X01 ; // 拉高 STE1

  delay(12);

  P5OUT &=~0X01 ; // 拉底 STE1

  delay(2) ;

  TXBUF1 =0X04 ; // /* 结束AAI模式*/

  while (IFG2&0x20==0x00); // 发送完否?

  delay(2) ;

  P5OUT |=0X01 ; // 拉高 STE1

  break;

  总结

  S ST串行式闪存因具备低耗能与小型接脚的特色,可作为硬盘、绘图卡、电子玩具、智能卡、MP3播放器、无线电话、蓝牙模块及GPS模块等装置比较理想的存储解决方案。由于SST串行式闪存的容量从512Kbit至16Mbit不等,因此适用于从低阶智能卡至高容量的声音档案存储,如电话录音机等各类资料存储 应用装置。

关键字:SST25VF020  数据存储  系统设计 编辑:神话 引用地址:基于SST25VF020的数据存储系统设计

上一篇:气体传感器量程的几种标定方法
下一篇:虚拟I2C总线串行显示电路介绍

推荐阅读最新更新时间:2023-10-12 20:45

冲孔打桩机的自动控制系统设计
0 引言 冲孔打桩机主要由桩锤、支架、卷扬机以及其他辅助设备组成,其工作原理是利用冲孔打桩机的卷扬机构,将电动机输出动力的回转运动转变为往复运动,通过钢丝绳来带动桩锤的提升,并在一定高度时使桩锤自由下落,利用桩锤的冲击作用冲挤土层或破碎岩石,同时钻渣随泥浆(或用取渣桶)排出,最后在地基土中形成桩孔。施工人员在桩孔内放置钢筋笼,灌注混凝土而制成桩。 目前,冲孔打桩机的打桩作业均由人工手动机械式操纵来完成。操作人员在工作过程中需要频繁对离合装置、刹车装置等控制部件进行操纵,劳动强度很大。随着微电子技术和自动控制理论的发展,将自动控制技术应用于冲孔打桩机,实现打桩的全自动化或半自动化,使操作人员从繁琐重复的体力劳动中解放出来成为
[单片机]
冲孔打桩机的自动控制<font color='red'>系统设计</font>
ARM 和DSP的地震加速度信号处理系统设计
1 系统构成及工作原理 地震加速度计由传感探头、光电转换及信号处理系统构成.传感探头由采用基于3x3耦合的光纤M z干涉仪和相关机械部分组成.如图1所示,干涉仪的输入端是一只2x2耦合器,输出端是一只3x3耦合器,被测信号加在干涉仪的传感臂上. 干涉仪的两臂光纤分别缠绕在传感头中的上下两个力臂圆筒上,当外部施加振动时,简谐振子施加给信号臂光纤一个纵向的应力,光纤的长度产生变化 △L (应变效应)、光纤芯的直径d产生变化 △d(泊松效应)、纤芯折射率n产生变化 △n(光弹效应),这些变化将导致光纤中光波的相位发生变化.泊松效应相对应变效应和光弹效应造成的相位变化非常小,可以忽略不计,从而即完成加速度信号对光信号的相位
[单片机]
ARM 和DSP的地震加速度信号处理<font color='red'>系统设计</font>
基于DSP控制的音频解码系统设计
MPEG(活动图像专家小组)是ISO/IEC组织的一个工作小组,负责制订有关活动图像、音频及其组合的压缩和解压缩处理等方面的技术标准。MPEG-1 Layer3(即MP3)是MPEG-1国际音频标准(ISO/IEC 11172)中的第三层编、解码算法,它具有压缩比高、声音还原质量好、算法复杂度适中等优点,采用这种标准制作的MP3格式的音乐在数字音频的存储、互联网上的多媒体音频传输等领域得到了广泛应用。 目前基于专用芯片的音频编解码方案软件升级灵活性不高,基于DSP的音频编解码方案又多基于C54x平台,而解决低功耗的技术方法是值得研究的问题。 基于上述背景,文中提出了基于DSP的音频解码系统的研究与实现这一解决方案。本课题的主要目的
[嵌入式]
基于DSP控制的音频解码<font color='red'>系统设计</font>
地铁监控系统设计解决方案分析
  高清视频监控近年来得以迅速发展,主要是为了解决在正常监控过程中“细节”看不清的问题,有个别城市新建地铁采用高清电视监控,从运营管理和治安管理,都需要高清监控图像,从面对地铁恐怖袭击更需要高清监控图像,高清监控采用广电标准,分辨率为1920×1080像素,而现在高清电视监控技术已日益成熟,设备成本已大幅下降,高清摄像机尤其适合在地铁人流密集地方监控,既能看清宏观又能看清细节,会在今后地铁监控广泛应用。   高清电视监控标准   我国规定标准清晰度电视(SDTV)的分辨率为720×576像素(D1分辨率),而高清晰度电视(HDTV)的分辨率为1920×1080像素,准高清1280×720像素;   1080i分辨率为1920点x1
[嵌入式]
基于nRF905模块和C8051F单片机的无线收发系统设计
  前言   在闭环钻井系统中,要求实时地把井下的信息传递到地面,以实施人工监控。通常情况下该任务由MWD中泥浆压力脉冲发生器来完成。当使用井下动力钻具组合时,近钻头传感器和MWD被动力钻具隔开。传感器无法用线缆与MWD连接,因此要把传感器的信息传送给MWD只能通过无线通信的方法。   本文设计了由C8051F0606单片机和nRF905无线射频器收发组成的一种无线数据传输系统的方案。该系统由发射和接收模块组成,发射模块主要将要发送的数据经单片机处理后,通过nRF905发送出去;在接收模块中,nRF905则将数据正确接收后通过上位机界面显示出来,从而实现短距离井下的无线通信。   无线收发系统硬件设计   
[单片机]
基于ATMEGA16的太阳能供电制冷系统设计
目前,绝大部分的制冷设备都是以电能驱动的。传统的制冷设备不仅消耗大量的电能,同时也因为使用氟里昂等制冷工质而对环境造成污染,因此制冷中的节能和环保问题成为人们关注的焦点,并寻求以清洁能源供电且不使用氟里昂等传统制冷工质的制冷方式。文中研究的制冷系统以太阳能光伏电池提供驱动能源、以半导体制冷片为冷源,是一种节能环保的新型制冷方式。 半导体制冷片也叫电子制冷片,依据珀尔帖效应原理来进行制冷。半导体制冷片不需要制冷剂,没有污染源,工作时没有震动、噪音、寿命长;作为一种电流换能型片件,通过输入电流的控制,可实现高精度的温度控制。半导体制冷已经在航空航天、医疗技术、生物工程等领域得到广泛的应用。 1 制冷系统设计 1.1 制冷功率计算
[单片机]
基于ATMEGA16的太阳能供电制冷<font color='red'>系统设计</font>
基于高速AD的激光扫描高频信号幅值测量系统设计
Z扫描是一种应用于光学非线性测量的方法,使用这种方法可以测量光学材料非线性折射率的大小、正负以及非线性吸收系数。因为通过光学材料的激光能量大小与光电接收器转换后获得的电压幅值成某种比例关系,因此通过测量光电接收器转换后的电压幅值就可以很方便地计算出光学材料的非线性折射率大小、正负以及非线性吸收系数。由于光脉冲的宽度较窄,其宽度约为几个ns,因此通常采用高频数字示波器测量其信号的幅值,然而高频数字示波器虽然能够得到准确的数据,但是其价格昂贵,体积较大,不适合形成一个独立的光学测量系统。本文给出的测量系统,采用高速并行A/D转换的方法,不但能够实时检测出光电转换后的电压幅值的数据,同时通过高速并行比较器基准电压的调节能自动滤除不需要的数
[测试测量]
基于高速AD的激光扫描高频信号幅值测量<font color='red'>系统设计</font>
基于嵌入式Linux的智能手机系统设计
  随着手持通信设备市场的快速发展,手机的功能逐渐增多。现在手机已经不只是用于语音通信的手持设备,而成为集成了短信、彩信、上网以及移动办公等附加功能的嵌入式通信平台。集成了这些功能的手机被称为智能手机。近年,嵌入式处理器的运行速度和功能都有了很大的提高,使得许多以前只能在PC上实现的应用,现在都可以在手持设备上实现。目前,市面上的智能手机主要采用Microsoft公司的ocket PC、Palm OS等商用操作系统,但这些操作系统开放的程序不够高,限制了许多第三方应用软件的移植。为使智能手机能够为第三方应用软件提供一个更为开放的嵌入式平台,笔者对智能手机系统做了比较深入的研究,提出一种以Linux作为嵌入式操作系统、Motorol
[嵌入式]
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved