移动存储器全面解析

最新更新时间:2013-05-21来源: 互联网关键字:移动存储器  全面解析 手机看文章 扫描二维码
随时随地手机看文章
似乎每天都有新的海量存储器标准问世。CompactFlash(CF)曾一度独步天下,但是今天,新设备制造商不得不在CF、安全数据(SD)、SDIO、多媒体存储卡(MMC)、RS-MMC、MMC Plus、MemoryStick、XD-Picture(XD)和CE-ATA等等这些海量存储器之间做出选择。有时,一种新标准具有明显优势;而另外一些时候,新标准和已有标准又像是在重蹈Betamax与VHS格式间的对决,在先期很难看到谁将取得胜利。

  CF标准是所有小型海量存储器的鼻祖,10多年前由SanDisk开发出来。它具有8或16位并行数据总线,传输速率在3~66MBPS之间。在许多需要16位宽UDMA总线(66Mbps)的高传输速率和高容量设备中,仍需要CF标准。目前CF+格式硬盘的可用容量最高可达10GB,而CF闪存卡可用的最高容量是8GB。

  因为首款CF卡使用的是NOR闪存,所以CF标准要求CF卡隐匿与NAND闪存接口的部分。主机在与CF卡通信时会将其看作是一个IDE硬盘,而CF卡上的控制器则负责坏块管理、平均读写(wear leveling)算法和与NAND闪存协同工作时所需的逻辑-物理映射。

  CF卡虽然一直未能成为手机用可移动存储器的主流,但它却在数码相机领域保持着极高的市场份额,特别是在大容量和高速度极为重要的高端市场。目前其它几种外设也可与CF+版本的接口进行连接,包括以太网、RS-232、传真/调制解调器、USB、蓝牙以及802.11b WLAN。

  多媒体存储卡(MMC)

  1997年,西门子和SanDisk推出了多媒体卡,其外形比CF卡小,从而可实现更小巧的便携式设备。在基本应用中,MMC可通过标准三线SPI接口外加一条片选线来控制。SPI接口的时钟频率最高可达20MHz。对需要更高带宽的应用,该规范提供拓宽了的4和8位带宽。MMC规范的4.0版增加了52MHz频率,从而支持50MBPS的传输速率。

  与CF不同,MMC规范不免除授权费用。根据www.MMCA.org上提供的信息:如果你不是MMC制造商,你可以分别花500美元或1,000美元订购MMC3.1或4.1版(MMCmobile和MMCplus)规范,而你的公司也并不需要成为MMCA成员。

  目前有三种类型的存储卡以MMC框架为基础,它们分别是:MMC Plus、MMC Mobile和MMC Micro。MMCplus是一种标称尺寸的MMC卡,它工作在2.7~3.6V电压下;具有1、4或8位的总线带宽;最低2.4MBPS的读写性能和26MHz频率(可以选择52MHz)。MMCmobile的体积更小,支持的电压也更低:1.65~1.95 V及2.7~3.6V。MMCmobile还必须支持MMCplus所需要提供的性能。MicroSD是该系列的最新补充。MicroSD的体积不到miniSD的1/3,是目前可用的最小存储卡(表1)。

  表1:各种存储卡的主要参数比较。

  MMC和SD卡:区别在哪里?

  常常有人将MMC标准和SD标准混为一谈,但实际上,它们是两个不同的标准。SD卡规范由以松下、东芝和SanDisk牵头的一个组织所有,而MMC规范由一个由涵盖广泛的行业组织领导的MMCA(多媒体卡协会)控制。

  有些出人意料的是,SD卡背后的推动力量从未得到行业的广泛认可。SD卡具有与索尼MagicGate类似的加密硬件,MagicGate被用于索尼的MemoryStick产品中。在音乐界接受以数字方式传播音乐之前,SD卡花了8年多的时间希望得到行业认可,而现在,SD卡已经成为该领域的附属产品。去年初,MMC协会接纳了具有竞争性的安全卡标准——Secure MMC 1.1版规范。在三星网站www.samsung.com上可查到Secure MMC的概览。

  MMC卡可插在为SD卡设计的物理槽内,该槽有两种形态:薄形和标准形。薄SD卡可插入MMC槽,但标准SD卡却因为厚度而无法插进。MMC和SD卡所用的协议在SD卡规范rev 2.11中完全兼容,但自此后,两种规范出现了某种程度的分道扬镳。

  图1:7脚MMC卡和9脚SD卡的区别清楚可见。

  MMC和SD卡的管脚排列是兼容的(图1)。SD卡上最多有9个管脚,而MMC卡上最多有13个管脚(图2)。MMC卡上多出管脚的唯一功能是增加总线宽度(表2)。因为可以对总线宽度进行编程,所以控制器可容易地找到共同特性并据此进行设置。所有带内置MMC支持能力的微处理器也支持SD卡。

  更小体积:MMCmicro vs. MicroSD

  MMC和SD组织为小型闪存卡创建的两种不同标准为业界带来了困惑。通过使用机械适配器,MMCmicro和MicroSD(也称为TransFlash)都后向兼容现有的SD/MMC插槽(图3)。两种存储卡体积都很小,但MMCmicro比MicroSD更快。MMCmicro采用MMC规范定义的较高的52MHz时钟速率,而MicroSD则继续采用25MHz。另外,MMCmicro卡拥有4位数据总线,而MicroSD仅支持串行数据传输。再有,MMCmicro支持1.8V电压,而MicroSD仅能工作于2.7~3.6 V电压。

  图2:13脚MMC卡后向兼容7脚版本。

  XD-Picture卡

  XD-Picture卡(以下简称“XD”卡)是在2002年7月推出的。与索尼的MemoryStick一样,它也是一种专属格式,所以很难从XD卡官方网站(www.xd-picture.com)中找到更多信息。如果想要了解你的公司需要花多少钱才能得到XD卡的使用许可,你必须与XD卡授权许可方签定保密协议。

  XD卡与SmartMedia标准有一点类似,即它们都是针对原始NAND闪存的封装技术。XD卡中没有嵌入控制器,所以控制CPU负责维护逻辑-物理表、管理坏区并执行纠错。该架构的优点是减小了硅面积,并且允许管理CPU拥有更多的接口控制能力,从而缩短写入时间。该架构的不利面,是管理CPU必须执行全部SmartMedia控制功能。

  图3:MMCmicro与MMC和SD的管脚排布。

  SDIO

  SDIO在SD标准上定义了一种外设接口。目前,SDIO有两类主要应用——可移动和不可移动。目前的可移动设备作为Palm和Windows Mobile的扩展设备,用来增加蓝牙、照相机、GPS和802.11b功能。不可移动设备遵循相同的电气标准,但不要求符合物理标准。某些手机内包含通过SDIO连接CPU的802.11芯片。此举将“珍贵”的I/O管脚资源用于更重要的功能。

  蓝牙、照相机、GPS和802.11b设备有专为它们定义的应用规范。这些应用规范与为PCI和USB设备定义的类规范很相像。它们允许任何宿主设备与任意外设“通话”,只要它们都支持应用规范。

  SDIO和SD卡规范间的一个重要区别是增加了低速标准。SDIO卡只需要SPI和1位SD传输模式。低速卡的目标应用是以最小的硬件开支支持低速I/O能力。低速卡支持类似调制解调器、条码扫描仪和GPS接受器等应用。对“组合”卡(存储器+ SDIO)而言,全速和4位操作对卡内存储器和SDIO部分都是强制要求的。

  CE-ATA

  CE-ATA有助于简化消费电子(CE)和ATA硬盘的结合。消费电子中有越来越多使用硬盘的趋向,但在小巧的手持设备中,40脚的ATA连接器和50脚的CF连接器实在占用了太多I/O资源。在CE-ATA规范中,ATA指令结构被覆盖在MMC物理层顶部。这种处理允许重新利用内置在当今常用应用处理器内的现有MMC控制器。CE-ATA连接器利用12个管脚实现9脚SD/MMC接口。多余的3个脚提供保留脚和额外的一对电源地,以便硬盘电机可工作在与信号线不同的电压。CE-ATA接口性能与4位SD/MMC一样。当采用25MHz和52MHz时钟时,其最高传输速率可分别达12.5MBPS和26MBPS。

关键字:移动存储器  全面解析 编辑:神话 引用地址:移动存储器全面解析

上一篇:虚拟I2C总线串行显示电路介绍
下一篇:基于PCI局部总线的1553B总线接口卡设计

推荐阅读最新更新时间:2023-10-12 20:45

电源纹波噪音测试方法,全面解析预防措施
电子电路(比如手机、服务器等领域)的切换速度、信号摆率比以前更高,同时芯片的封装和信号摆幅却越来越小,对噪音更加敏感。因此,电路设计者们更关心电源噪音的影响。实时示波器是用来进行电源噪音测量的一种常用工具,但是如果使用方法不对可能会带来完全错误的测量结果,PRBTEK在和用户交流过程中发现很多用户的测试方法不尽正确,所以把电源纹波噪音测试中需要注意的一些问题做一下总结,供大家参考。 由于电源噪音带宽很宽,所以很多人会选择示波器做电源噪音测量。但是不能忽略的是,实时宽带数字示波器以及其探头都有其固有的噪音。如果要测量的噪音与示波器和探头的噪音在相同数量级,那么要进行精确测量将是非常困难的一件事情。 示波器的主要噪音来源于2个
[测试测量]
电源纹波噪音测试方法,<font color='red'>全面</font><font color='red'>解析</font>预防措施
全面解析阻容降压电路_分析其原理
1、什么是阻容降压? 阻容降压是一种利用电容在一定频率的交流信号下产生的容抗来限制最大工作电流的电路。 电容器实际上起到一个限制电流和动态分配电容器和负载两端电压的角色。 2、阻容降压电路由哪几部分组成? 阻容降压电路由降压模块、整流模块、稳压模块和滤波模块组成。 3、阻容降压基本设计要素 电路设计时,应先确定负载最大工作电流,通过此电流值计算电容容值大小,从而选取适当电容。 此处与线性变压器电源的区别:阻容降压电源是通过负载电流选定电容;线性变压器电源是通过负载电压和功率选定变压器。 阻容降压电流计算 阻容降压电路可以等效为由降压电容C1和负载电阻R1组成,电阻和电容串联分压。 电
[电源管理]
EPS电源和UPS电源全面解析
  1 引言    EPS电源 和 UPS电源 作为后备 电源 在社会上的应用越来越广,它们之间存在许多相似的地方,容易造成人们的误解,下面跟大家一起谈谈EPS电源和UPS电源。   2 EPS电源和UPS电源的基本概念   EPS(Emergency Power Supply)是应急电源,在市电故障时,能够继续向负载供电,确保不停电,以保护人民生命和财产的安全。EPS电源按用途可分为应急照明、动力和动力变频三大类。UPS(uninterruptible power system)是不间断电源,在市电出现异常和突然中断时,它能持续一定时间为设备供电,给用户充裕的时间应对工作。UPS按工作原理可分为后备式、在线式和
[电源管理]
vivo APEX概念手机解析:不止98%全面屏完成度
在技术创新方面,vivo总能给我们惊喜,比如Xshot的OIS光学防抖、X9的柔光双摄、vivo X20 Plus屏幕指纹版的全球首款屏幕识别以及现在vivo APEX的98%全面屏完成度和Super HDR。   3月5日,在vivo杭州研发中心的首个媒体开放日上,此前在MWC 2018展会上大放异彩的vivo APEX全面屏概念手机正式亮相。   作为本届MWC 2018上最受关注的一个产品,vivo APEX向我们展示了最接近脑海中全面屏手机的形态,再加上其本身配备有多项前沿黑科技,就更让vivo APEX引人注目了。   话不多说,接下来就让我们进入vivo APEX黑科技解密环节。   一块屏幕引发的创新进化   作为v
[手机便携]
PLC梯形图程序设计过程的全面解析
  1.PLC内部软器件触点的使用次数是无限制的。   2.梯形图的各支路,要以左母线为起点,从左向右分行绘出。每一行的前部是触点群组成的工作条件,最右边是线圈或功能框表达的工作结果,亦即触点不能放在线圈的最右边。
[嵌入式]
PLC梯形图程序设计过程的<font color='red'>全面</font><font color='red'>解析</font>
全面解析TL494脉宽调制控制电路
  TL494是一种基于固定频率脉宽调制的电路,包含开关电源控制的全部功能,广泛应用于单端正激双管式、半桥式及全桥式等开关电源。TL494有SO-16和PDIP-16两种封装形式用以适应不同场合的要求。TL494内置线性锯齿波振荡器,振荡频率通过外部的一个电阻和一个电容进行调节,其振荡频率如下:        输出脉冲的宽度是通过电容CT上的正极性锯齿波电压与另外两个控制信号进行比较来实现。功率输出管Q1和Q2受控于或非门。当双稳触发器的时钟信号为低电平时才会被选通,即只有在锯齿波电压大于控制信号期间才会被选通。当控制信号增大,输出脉冲的宽度将减小(见图)。控制信号由集成电路外部输入,一路送至死区时间比较器,一路送往误差放大器的
[电源管理]
<font color='red'>全面</font><font color='red'>解析</font>TL494脉宽调制控制电路
英特尔CPU漏洞事件全面解析
在即将过去的本周,科技行业中讨论得最热烈的事件就是由Intel处理器设计缺陷进而引发的一系列漏洞“漏洞”。作为2018年的首个大新闻,这次被曝出的芯片级漏洞波及范围之广、程度之深是我们始料未及的。而位于漩涡的中心:Intel扮演的是一个相当重要但尴尬的角色。   首先,事件的起点是Intel市售处理器被爆出因为设计的缺漏,会造成原本普通的程序却可以拥有前所未有的高权限,甚至可以直接访问核心内存当中的数据,这对于用户隐私和设备安全无疑是多年来前所未有的噩梦,而很快,漏洞迅速升级演变,研究人员称其为“Meltdown”(熔断)和“Spectre”(幽灵),不仅可以拥有内核级别的高权限,潜在的危害性、影响的广阔性、解决的棘手性都始料未及
[安防电子]
三相桥式全控整流电路全面解析
随着社会生产和科学技术的发展,整流 电路 在自动 控制 系统、测量系统和发电机励磁系统等领域的应用日益广泛。常用的三相整流 电路 有三相桥式不可控整流电路、三相桥式半控整流电路和三相桥式全控整流电路,由于整流电路涉及到交流信号、直流信号以及触发信号,同时包含晶闸管、 电容 、电感、 电阻 等多种元件,采用常规电路分析方法显得相当繁琐,高压情况下实验也难顺利进行。Matlab提供的可视化仿真工具Simtlink可直接建立电路仿真模型,随意改变仿真参数,并且立即可得到任意的仿真结果,直观性强,进一步省去了编程的步骤。本文利用Simulink对三相桥式全控整流电路进行建模,对不同 控制 角、桥故障情况下进行了仿真分析,既进一步加深了三相
[电源管理]
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved