基于S3C2410的嵌入式视频采集系统设计(二)

最新更新时间:2013-05-26来源: 互联网关键字:S3C2410  嵌入式  视频采集 手机看文章 扫描二维码
随时随地手机看文章
通过调用上面的函数,我们基本得到了所需的参数值,这样我们就可以启动摄像头了。

  当然我们还需要staticvoidzc301_shutdown(structusb_zc301*zc301)来关闭摄像头。

  至此,摄像头驱动的驱动基本完成。通过这些函数的设置我们可以把具体的硬件电路抽象化为数据结构中的参数值。接下来我们可以通过V4L驱动来调用这些函数,实现对参数的赋值、打开设备、采集图像和关闭设备等一系列的过程。

  重新编译、运行内核时,在串口反馈信息中会显示USB摄像头驱动程序成功加载。如图3所示。

  

  图3串口反馈信息3Video4Linux下的图像采集编程:

  Video4Linux,简称V4L,是Linux中关于视频设备的内核驱动,它为针对视频设备的应用程序编程提供一系列半标准的接口。V4L利用这个接口,增加一些额外的功能,同时向外提供了一个属于自己的API。我们可以通过调用V4L的API来实现各种功能。在Linux下,视频采集设备的正常使用依赖于对Video4Linux标准的支持。目前的V4L涵盖了视、音频流捕捉及处理等内容,USB摄像头也属于它支持的范畴。

  V4L中定义的主要数据结构:

  

  这些数据结构都是由Video4Linux支持的,它们的用途如下:

  (1)video_capability包含摄像头的基本信息,例如设备名称、支持的最大最小分辨率、信号源信息等,分别对应着结构体中成员变量name、maxwidth、maxheight、minwidth、minheight、channels(信号源个数)、type等;

  (2)voide_picture包含设备采集图像的各种属性,如brightness(亮度)、hue(色调)、contrast(对比度)、whiteness(色度)、depth(深度)等;

  (3)video_mmap用于内存映射;

  (4)voido_mbuf利用mmap进行映射的帧信息,实际上是输入到摄像头存储器缓冲中的帧信息,包括size(帧的大小)、frames(最多支持的帧数)、offsets(每帧相对基址的偏移)。

  系统在采集图像之前,需要初始化这些数据结构中的参数值,系统才能够按照要求采集图像数据。

  在USB摄像头被驱动后,只需要再编写一个对视频流采集的应用程序就可以了。根据嵌入式系统开发特征,先在宿主机上编写应用程序,再使用交叉编译器进行编译链接,生成在目标平台的可执行文件。宿主机与目标板通信采用打印终端的方式进行交叉调试,成功后移植到目标平台。

  V4L图像采集编程流程:

  (1)打开视频设备;

  (2)读取设备信息;

  (3)更改设备当前设置;

  (4)视频采集得到图像信息;

  (5)对采集到的图像进行处理;

  (6)关闭视频设备。
本文编写采集程序是在安装Linux操作系统的宿主机PC机上进行的,之后再移植到开发板上。下面是具体论述。

  之前我们讲到了在V4L中定义的主要数据结构及其功能。对应着这些内容,我们需要对这些数据结构进行定义,以抽象化一个视频设备。以下是具体的定义内容:

  

  摄像头、采集图像和关闭摄像头的操作。采集程序中定义了如下的函数,以实现前面讲到的功能。

  intinit_videoIn(structvdIn*vd,char*device,intwidth,intheight,intgrabmethod);初始化摄像头设备。*vd包含了之前定义的数据结构中的基本信息。另外还要对摄像头采集图像的大小、采集模式等参数进行赋值。

  intv4lGrab(structvdIn*vd,char*filename);采集图像主程序。*filename为图像的文件名,我们可以通过对文件名的设置来确定图像保存的位置。

  intclose_v4l(structvdIn*vd);关闭摄像头intget_jpegsize(unsignedchar*buf,intinsize);采集图像的大小。

  因为我们是通过调用采集主函数intv4lGrab(structvdIn*vd,char*filename)来实现图像的采集和保存的,所以需要详细的讲解一下该函数的构成。以下是该函数的具体内容:

  

  首先,我们需要定义几个参数,如下:

  FILE*fp;定义一个文件类型指针,指向我们采集到的图像文件intlen;

  定义一个整型变量,记录从内存中读取的数据量intsize;

  定义一个整型变量,指明一帧图像的数据量interreur=0;定义一个整型变量,指明运行时的错误返回值intjpegsize;定义一个整型变量,指明我们需要的图像大小。

  接着我们调用read(vd-》fd,vd-》pFramebuffer,size)函数,把存放于图像缓冲区的数据读入到指定的临时文件中。之后根据我们对图像的大小、亮度、对比度等要求转化之前采集到的图像数据,最后我们打开一个文件,把图像数据写入到该文件中并保存。

  4 结论

  本文设计了一种嵌入式视频采集系统,该系统小巧,并且在保证当前信息完整的情况下,尽可能少的占用存储容量,实现了该系统的图像采集、存储和重现功能。在硬件规划上,采用实用简单的USB接口通信。且系统中预留了丰富的外设接口,便于今后的扩展升级。

关键字:S3C2410  嵌入式  视频采集 编辑:神话 引用地址:基于S3C2410的嵌入式视频采集系统设计(二)

上一篇:基于S3C2410的嵌入式视频采集系统设计(一)
下一篇:嵌入式无线接入系统设计

推荐阅读最新更新时间:2023-10-12 20:46

Tensilica加入HSA基金会,助力嵌入式异构计算标准建立
美国加州SANTA CLARA – 2013年4月19日-Tensilica今日宣布加入HSA基金会(异构系统架构),以下简称HSA,HSA是一家非盈利组织,致力于开发架构规范,将现代设备中并行计算引擎的性能和能耗效率充分发挥出来。Tensilica将凭借其多年协助客户在异构多核SoC(片上系统)领域的经验,将设计推向市场,从而进一步发展并推广并行计算的标准。 Tensilica产品营销和业务发展部副总裁Steve Roddy表示:“Tensilica作为在一个多核领域经验丰富的领导厂商,可为控制平面和计算密集型数据平面提供独特的解决方案。Tensilica现在的客户为实现不同的功能,使用多个Tensilica处理器,如音频负
[嵌入式]
基于CPLD和嵌入式系统的高速数据采集系统的设计与实现
1系统结构   高速 数据采集 系统由高速 ADC 、 CPLD 、FIFO和 嵌入式系统 组成,系统结构如图1所示。    2.1嵌入式操作系统—Linux   Linux作为嵌入式操作系统有以下几大优点:   (1)可应用于多种硬件平台;(2)源代码公开;(3)微内核直接提供网络支持;(4)高度模块化使添加部件非常简单。    2.2硬件设计   整个数据采集板采用双层设计,上层是嵌入式系统的核心板,包括嵌入式系统CPU、FLASH和SDRAM等系统基本配置。 MPC860 的控制总线与数据总线通过核心板100线×3的接口插座与下面的扩展板各芯片通讯。硬件的结构框图见图2。
[嵌入式]
基于CPLD和<font color='red'>嵌入式</font>系统的高速数据采集系统的设计与实现
基于ADuC841的数据采集系统的设计
0 引言 油田现场往往环境复杂,电磁干扰多,温度/湿度相对变化范围较大,所以一直面临着因采集到的数据不准确,影响测量精度和速度。在设计现场数据采集模块的过程中,经过对众多数据采集处理芯片的分析比较,选用了ADuC841作为数据采集的核心芯片,相比于早期的ADuC81x系列,它在速度大幅度提升片内的集成功能、器件的可靠性和功耗等方面都达到了一个崭新的水平,证明该芯片非常适合用于复杂电磁环境下工业控制上的小信号数据采集。 1 ADuC841的基本原理和性能特点 ADuc841单片机具有高速、高精度的ADC,DAC功能,以及独一无二的在电路可调试、可下载的特点,特别适合在各种测控系统和仪器仪表中使用。 ADuC841(
[测试测量]
基于ADuC841的数据采集系统的设计
两种嵌入式系统设计模型研究
1 引 言 当今,在嵌入式领域,嵌入式技术已经成为新的技术热点。嵌入式系统的最典型的特点是它同人们的日常生活紧密相关,小到MP3、PDA等微型数字化设备,大到信息家电、智能电器、车载GPS等形形色色运用了嵌入式技术的电子产品和各种新型嵌入式设备在数量上现已远远超过了通用计算机。在嵌入式设备发展的30多年的历史中,嵌入式技术从来没有像现在这样风靡过,人类也从来没有像现在这样享受嵌入式技术带来的便利。 嵌入式系统是以应用为中心,以计算机技术为基础,软硬件可裁剪,适用于应用系统对功能、可靠性、成本、体积、功耗有严格要求的专用计算机系统。 从整体来看,我们将嵌入式系统分为两个部分;第一个部分是与应用相关的硬件平台,它负责
[单片机]
两种<font color='red'>嵌入式</font>系统设计模型研究
嵌入式设备的静止图像编码
摘要:降低多媒体算法的复杂性和存储器需求对于存储器资源和运算能力都很有限的嵌入式设备是十分重要的。在极低码率应用时,JPEG存在严重的方块效应,JPEG2000具有极高的运算复杂性和存储器需求。分析了H.264 INTRA帧编码的运算复杂性和存储器需求,并提出了一种减小运算复杂性的有效方法。结果显示,H.264 INTRA帧编码具有极低的运算量和存储器需求,非常适合嵌入式设备的静止图像编码。   关键词:静止图像编码 H.264 JPEG2000 零块检测 嵌入式多媒体设备的静止图像编码有着广泛的应用,如照片的拍摄与传输。设备处理的图像越来越大,存储容量和传能力都相当有?因而静止图像编解码要求具有较低的运算复杂性、较少的存储器需
[嵌入式]
基于DSP的嵌入式视频监测
近几年,随着DSP及嵌入式技术的快速发展,采用DSP嵌入式系统的视频设备已在各领域中被广泛应用。本文利用ADSP Blackfin533(BF533)为核心处理器,设计了视频检测系统,实现了视频图像的采集、处理和网络传输,该系统具有体积小、功耗低、性能高、可便携等优点。   1 系统硬件平台设计   系统工作原理:由图像传感器采集到的图像信号以YUV(4:2:2)的格式输出,通过BF533的PPI接口以DMA方式存入SDRAM。当采集完一帧数据后,BF533从SDRAM中读入数据进行位图数据格式转化,将位图图像数据通过以太网接口传输到远程PC机上,然后系统继续采集下一帧图像。   1.1 处理器   Bla
[模拟电子]
基于DSP的<font color='red'>嵌入式</font>视频监测
立足优势 持续领先:KIOXIA铠侠新一代UFS嵌入式闪存器件已批量交货
2022年12月8日,中国上海 — 全球存储器解决方案领导者KIOXIA铠侠中国近日宣布, 今年其最新发布的业界首款*1支持MIPI M-PHY*2 v5.0的通用闪存*3Universal Flash Storage (以下简称:UFS) 嵌入式闪存器件,目前已率先批量交货,助力本土手机产商实现存储速度飞跃 。新一代UFS凭借高速读写性能,将应用于智能手机等其他消费类电子产品中,显著提升产品的功能性和用户的使用体验。 据前瞻洞察预测, 全球通用闪存存储市场规模在2025年将达到134亿美元*4。UFS是符合JEDEC标准的包含集成控制器的非易失性闪存设备,它开发用作嵌入式存储器解决方案的e-MMC*5高性能替代品 。相
[嵌入式]
立足优势 持续领先:KIOXIA铠侠新一代UFS<font color='red'>嵌入式</font>闪存器件已批量交货
PIC16C78系列混合信号嵌入式芯片的原理和应用
在对嵌入式系统的体积、耗电、集成度等指标要求越来越高的今天,仅仅有带AD变换电路的MCU已经越来越难以处理外围的其他模拟电路。据此,相继有一些MCU制造商推出了混合了模拟电路的MCU,为设计者提供了新的选择。微芯(Microchip)公司的PIC16C78X系列即为其中的一种8位MCU,该电路集成了通用运算放大器、8位DAC变换器、8位ADC变换器、可编程开关模式控制器(PSMC)、比较器和精密参考电压于20脚的芯片内。同时具有用户可编程的低电压检测、内部振荡器、节电睡眠模式和在线编程的功能。 集成了上述模拟电路的混合式芯片具有广泛的应用,特别适合需要作闭环控制的场合。例如在电源开关控制系统的设计中,PSMC可以作开
[单片机]
PIC16C78系列混合信号<font color='red'>嵌入式</font>芯片的原理和应用
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved