经典FET输入甲类前级

最新更新时间:2013-07-11来源: 互联网关键字:FET  甲类前级 手机看文章 扫描二维码
随时随地手机看文章

经典FET输入甲类前级

   本电路是参照《无线电与电视》杂志2000第一期的《电池供电高级纯A类分立件前级放大器》黄小凤所设计的电路加以补充的一个经典电路。其中列出了原电路中没有注明的R3、R4、R7、R10、R18、R19、C2的具体参数,该参数是由“新客”老师经过周密计算和认真推敲得出的。由于此线路有着纯甲单端的纯净甘甜,速度感和瞬态响应优异,故特与烧友们一起分享。


    本前级实际是一个20dB的平直放大器,其主电路如图1所示,从图中可以知道,它是一个经典的两级差分放大和单端挽推DC化电路。除DC化措施外,其电压放大和挽推输出级均工作于纯甲类状态.由于甲类放大的的工作点手机在最佳负载上,静态电流的取值为最大电流的摆幅的一半,挽推管又是一起工作的,只是一管电流增加另一管电流减少,所以对猝发信号的反应极为敏锐,不象有的AB类或B类的输出电流对应输入信号有拖沓的滞后现象,不存在开关失真和交越失真.此外,对晶体管的Ie-Vb的非线性失真也可以很大程度上的抵消,使严重危害声音甜美的奇次谐波失真最小,尽管他的效率不高但用在前级之中,却是物尽其用的明智之举。
    要获得纯净而低噪的重放,高素质的电源的一个特别重要的基础。国外进口名机对电源素质极为重视,可见电源的好坏对整机的素质有决定性的影响,因此我们效仿高档名机对电源采取电池供电的形式,使其达到更高的水平,电池可采用6只6V/1.5A,质量较好的免维护蓄电池,每边三枚做正负供电。这样一方面为取得良好的音质打下了坚实的基础,另一方面也省去了设计复杂,制作难度较高的电源电路。“前级电路(电源附图)”是该机的充电电路。
    一个好的前级,不但要有好的电路设计,好的电源,还要有好的元件支持,其中是缺一不可的。由于本电路的元件不多,所以采用高素质的精品元件并不会有很大的难度。而且采用较好的元件还可以帮助克服本机一个DC化的弱点,就是直流零飘的问题,严格的选配晶体管可以很大程度上对输出端保持零电位有保证。  
    由于输入级处于放大器的最前端,它对全机信噪声要求十分苛刻。一般双级型晶体管由于噪声特性不是十分理想,所以难以胜任,为取得较好的低噪声特性,该前级用了高跨导Gm结型场效应(JFET)组成的高阻抗,大动态,低噪声差动放大器,但使用高跨导的FET管也有其利弊,因为在结构上 FET管的输入电容及反馈电容较大,所以对音色有一定的修饰作用。至于你喜欢胆之温暖或石之清丽就见仁见智了。本机的输入级是使用了市场上常见的高跨导Gm结型场效应管-NPD5564S,由于此管是孪生结型管所以其内部特性一致,不用配对。可以省去不少时间。采用结型场效应作为第一级差分放大也有一个好处,就是当工作电流ID取得较大时保证大的动态范围和输出大的过渡电流给R10,C2充电.用这种管作差分输入时在工作电源较大时噪声仍然十分小,静态电流为1.2mA,在兼顾信噪比的前提下,取较大的表态电流不仅提高了该级的搞过载能力,电压转换速率和频宽都有了相就的明显改善。面用普通的双极型晶体管作差分放大级时,工作电流一大,电流噪声必然会剧增,人面使整机的信噪比劣化。
    输入级的双端输出使得电压放大仅出构成差放形式,两级差放的市共模抑制比使得本机中点直流失偏电压飘移极小.如图所示,第一级的负载,R10和C2为双极点频率补偿.BG2,BG3为BG1组成一个共源共基电路,以减小GB1两管的极间电容影响,这样就改善了的高频响应.为了提高共模抑制比(CMRR),共用了一个恒流源,该恒流源由BC4,D1,D2,组成,B5为镜流级,由于发射极电阻与集电极电阻大约相同,因此其集电极输出波形与发射极波形大小相同,只是方向相反.通过BG5镜流级使BG3输出加到BG6与BG4输出加到BG7信号幅度相同,BG6与BG7组成差分推挽电路,同时作为BG8,BG9的偏置电压,BG8,BG9组成对称的单端推挽输出级,以获得较大的输出电流及较低的输出阻抗。
    第二级所用的管子是东芝的C2240,Hfe>250误差最好保证在3%之内,也可以选用Vceo>120V,Icm>50mA,Pcm>200的管子,但要注意管子的一致性。这样才能保证有更好的声音和更好的稳定性。
    最后一级同样不能马虎,要求管子参数为Vceo>160,Icm>50mA,Pcm>750mW,fT>50MHz,符合以上要求的管子的市面上有不少,其中较有口碑的有人立的D756、B716,D667、B647,还有东芝的A1145、C2705等,本机则选用了大家所熟悉的2SB647、2SD667,对该管的要求是在Ic=10mA状态下配对误差为>2%。
    最后对于其他元件很不能有所大意,电阻最好选用菲利浦的五色环电阻功率为1/2W误差也应尽可能的小,电容方面市场的选择很多,但切记要使用较高素质的正品电容,同时整流电容的一致性也不容忽视,因为正负极电容的充放电时间的不同,会使电源不平衡,从而产生低频自激,轻则声音变坏,重则影响到整机的正常工作。所以电容误差应控制在3%之内。电位器选用ALPS的塑封型电位器,其他电位器可选用我近日的电器市场见到的一种叫COPALD的电位器也是塑封型的,是日本生产的售价在2-4元之间。为度金引脚,外型小巧,品质优良传输线为特富龙度银线,焊锡也最好使用含银锡。机箱的选用就视乎自己的条件自行选择,但要注意抗震。
    整机布局可分为三个小机箱,左为电源包括:变压器、充电电路,中间为电池组,右边则为前级电路,布线方面要短而不乱,最好对敏感的走线加以屏蔽。
    调试方面只要元件素质符合要求,本机调试并不复杂,首先的电池的电压,而后先使输入端对地短路,微调W3使输出端为0V,后调W2使R9两端电压差为5V,最后的W4使BG5、BG6的集电极对地电压为-1V,完成后静侯30分钟,再接通电源对以上步骤重新调试,使输出中点电压为0V即可。

关键字:FET  甲类前级 编辑:神话 引用地址:经典FET输入甲类前级

上一篇:IC+射极交叉输出的前级
下一篇:IC+分立件的RIAA电路

推荐阅读最新更新时间:2023-10-12 20:46

TI推出全新车用GaN FET,可提供两倍的功率密度
德州仪器(TI)推出了面向汽车和工业应用的下一代650V和600V氮化镓(GaN)场效应晶体管(FET),进一步丰富拓展了其高压电源管理产品线。与现有解决方案相比,新的GaN FET系列采用快速切换的2.2 MHz集成栅极驱动器,可帮助工程师提供两倍的功率密度和高达99%的效率,并将电源磁性器件的尺寸减少59%。TI利用其独有的GaN材料和在硅(Si)基氮化镓衬底上的加工能力开发了新型FET,与碳化硅(SiC)等同类衬底材料相比,更具成本和供应链优势。 电气化正在改变汽车行业,消费者越来越需要充电更快、续航里程更远的车辆。因此,工程师亟需在不影响汽车性能的同时,设计出更紧凑、轻便的汽车系统。与现有的Si或SiC解决方案相比,使
[半导体设计/制造]
TI推出全新车用GaN <font color='red'>FET</font>,可提供两倍的功率密度
TI推出带集成驱动器、内部保护和有源电源管理的车用GaN FET
德州仪器(TI)今天推出了面向汽车和工业应用的下一代 650V 和 600V 氮化镓(GaN)场效应晶体管(FET),进一步丰富拓展了其高压电源管理产品线。与现有解决方案相比,新的 GaN FET 系列采用快速切换的 2.2 MHz 集成栅极驱动器,可帮助工程师提供两倍的功率密度和高达 99%的效率,并将电源磁性器件的尺寸减少 59%。TI 利用其独有的 GaN 材料和在硅(Si)基氮化镓衬底上的加工能力开发了新型 FET,与碳化硅(SiC)等同类衬底材料相比,更具成本和供应链优势。 电气化正在改变汽车行业,消费者越来越需要充电更快、续航里程更远的车辆。因此,工程师亟需在不影响汽车性能的同时,设计出更紧凑、轻便的汽车系统。与现
[汽车电子]
使用FET的压控衰减器(音量控制)电路
该电路采用衰减场效应晶体管(FET)分流信号到地面。这个R2是用来控制输出级(衰减等级),但是你可以用其他来源的电压信号来控制网格的FET如DAC输出,这是一种负面的信号电压会(你可以用DAC采用对称与供电系统)。 使用FET的压控 衰减器 (音量控制)电路:
[电源管理]
使用<font color='red'>FET</font>的压控衰减器(音量控制)电路
Transphorm推出SuperGaN FET 的低成本驱动器解决方案
Transphorm FET 使用简单的半桥栅极驱动器实现了高达 99% 的效率,验证了在超过 1 kW 的宽功率范围内具有成本效益的设计方案 加利福尼亚州戈莱塔 – 2023 年 6 月 15 日 –新世代电力系统的未来, 氮化镓(GaN)功率转换产品的全球领先供应商Transphorm, Inc. 发布了一款高性能、低成本的驱动器解决方案。 这款设计方案面向中低功率的应用,适用于LED照明、充电、微型逆变器、UPS和电竟电脑 ,加强了公司在这个30亿美元电力市场客户的价值主张。 不同于同类竞争的 e-mode GaN 解决方案需要采用定制驱动器或栅极保护器件的电平移位电路,Transphorm 的 SuperGaN®
[电源管理]
MOS-FET与电子管OTL功放的制作
电子管,是一种在气密性封闭容器(一般为玻璃管)中产生电流传导,利用电场对真空中的电子流的作用以获得信号放大或振荡的电子器件。早期应用于电视机、收音机扩音机等电子产品中,近年来逐渐被晶体管和集成电路所取代,但目前在一些高保真音响器材中,仍然使用电子管作为音频功率放大器件(香港人称使用电子管功率放大器为“煲胆”)。
[模拟电子]
UnitedSiC第四代750V SiC FET问市,加速逆变器革新
作为最成熟的WBG宽带隙半导体,SiC已发展成为可与硅技术匹敌的半导体技术。相比传统Si类器件,它有着开关损耗小、开关频率高和封装小等诸多优势,更适合应用于电动汽车、充电桩和电路保护等多种应用场景中,它们可为高压功率半导体带来许多富有吸引力的特性。凭借这些优势,SiC一跃成为市场焦点,需求量一直居高不下。 面对此状,全球各大厂商纷纷调整业务领域,扩大产能供给,例如,CREE和ROHM正大力扩张150mm SiC晶圆厂产能,并开始着手创建200mm SiC晶圆厂。而对于Fabless初创企业,他们也同样卯足劲,不断突破技术难点,用一个个新产品打出名堂。 近日,全球唯一一家拥有同时兼容SiC和Si驱动的SiC FET制造商Un
[半导体设计/制造]
UnitedSiC第四代750V SiC <font color='red'>FET</font>问市,加速逆变器革新
EPC车规80 V EPC2214 eGaN®FET 使得激光雷达系统看得更清晰
宜普电源转换公司(EPC)宣布再多一个车用氮化镓(eGaN)器件(80 V的EPC2214)成功通过AEC Q101测试认证,可在车用及其它严峻环境支持多种全新应用。 基于氮化镓(eGaN)技术的产品已进行量产超过9年,累计了数十亿小时的实际汽车应用经验,包括全自动驾驶汽车的激光雷达及雷达系统、应用于数据中心计算机的48 V–12 V DC/DC转换器、具有超高保真度的信息娱乐系统及高强度的货车头灯等应用。这些全新器件已经通过严格的AEC Q101测试认证,随后会推出更多面向严峻的车用环境的分立晶体管及集成电路。 EPC2214为80 V、20 mΩ氮化镓场效应晶体管元件,超小占板面积(1.8平方毫米),脉冲电流为4
[汽车电子]
EPC车规<font color='red'>级</font>80 V EPC2214 eGaN®<font color='red'>FET</font> 使得激光雷达系统看得更清晰
瞄准高端市场 友达将收购FET的部分资产
  台湾友达科技近日宣布,他们已经与FET公司以及FET日本公司达成了协议,友达将出资收购FET公司的部分资产,并将因此而获得FET公司的部分专利技术。FET公司目前在FED场射显示技术(Field Emission Display)领域占据领先地位,索尼公司目前拥有FET公司39.8%的股份。友达并表示,其收购的内容将包括FED场射面板相 关技术专利,FED技术实施方案,以及FED面板生产用设备等。    FED场射面板兼具CRT显示器和LCD显示器的优势,其工作原理与CRT显示器完全相同,同样采用阴极射线管轰击屏幕磷粉发光,因此图像对比度以及亮度,色彩,响应速度等方面优于LCD面板。而且FED面板中的电
[半导体设计/制造]
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved