顶级电子管OTL耳机放大器

最新更新时间:2013-07-12来源: 互联网关键字:顶级电子管  OTL耳机  放大器 手机看文章 扫描二维码
随时随地手机看文章

耳机放大器设计目标是:

  • 非常靓声
  • 低功耗
  • 小尺寸(30x40厘米)
  • 电源部分可以有多种选择不使用线形不佳的电源调整管,如6080和6C33-B
  • 低输出阻抗(大约33欧姆)
  • 输出级的偏流足以满足音乐峰值的要求(300欧时达20Vpp)
本电路通过SPICE设计软件优化,采用Mithat F. Konar设计的电子管模型。这种模型与真实情况非常接近,已经开发了一个交互式的程序来确定正确的参数。这是E182CC的结果(红色是模拟曲线,白色是真实曲线):


图1 E182CC SPICE模拟图

这是5814的(ECC82的军用型号):


图2  5814 SPICE模拟图

用SPICE模拟的曲线与真实曲线非常接近,几乎难以区分。真实曲线是用Audiomatica的Sofia vacuum tube curve tracer制作。SPICE电路模拟软件是免费的,有 Unix (Berkeley)平台的和Windows (WinSpice)平台的,在Windows 95/NT下也有许多商业软件。[原文编者:一个Windows平台下的图形化的SPICE模拟软件的测试版可以从Interface Technologies/MicroSim下载。]

电路图


图 3a


图 3b


图 3c

在耳机放大器的电路中(图3a,图3b和图3c),增益级使用单端甲类三极管,输出级使用双三极管并联作阴极跟随器。第一个版本使用E82CC/5814,它的声音很靓,但是因为线形不佳而有失真。我用的是JAN Philips的5814,也许用其它管子声音更好,像Mullard或Jan Philips的E82CC/ECC82。每只5814的偏流调至4.42mA,耗散功率3.76W。为了降低失真,阴极电阻上没加旁路电容,形成本地负反馈,你也可以试着加一个 220uF, 16V ELNA电解。

第二个版本使用(我的是RCA 3A5)直热三极管,失真更小,那幼滑的声音只有直热三极管才能做到。3A5必须采用直流供电,如图7所示。第三版采用Jan Philips 6SN7(我现在最喜爱的),虽然声音不及3A5幼滑,但是失真却非常低,低频响应令人瞠目!有时,我在听6SN7时想,高频是不是有所丢失,但这并不是真的。
注意: 3A5非常敏感,具有微音效应(如果你摸一下它,耳机会发出‘gong’的一声)。我把3A5装在一个浮动管座上。

在以上三个版本中,输出电子管V2的偏流都是每只26mA(加起来52mA),总功耗6W(2x3W)。仅指使用Mullard或JAN Philips的电子管而言。


图 3d

所有的电阻用Allen Bradley碳膜以取得更好的声音。7个2W22K的电阻可以换成一只3K20W的TO220封装的Caddock无感电阻。图3d画出如何安装7只22K电阻。

交连和输出电容使用Jensen或Audio Note的油浸纸介电容,当然像Solen这种MKP电容也可以用。对于电解,我喜欢Black Gate或ELNA Cerafine(Audio Note制),ROE、PRAGUE、 MALLORY也是很好选择。

近年来,在Hi-end放大器中使用电容出现了两种趋势:一是使用MKP聚丙烯电容(在输出级和交连上),二是电解电容(在电源部分)和油浸纸介电容(用作交连)。MKP电容在动态环境中测试,其低失真、低内阻和速度快的特点深受好评。电解电容一般失真较大、速度不高,但是,也有像Black Gate和ELNA Cerafine这种音频专用的上佳品种。

这次,我使用的是ROE电解和SOLEN MKP电容。实际聆听测试,MKP电容使得声音圆滑。你可以根据自己的爱好选择!本文中的电源滤波电容和放大器的输出电容可用220UF或以上的MKP电容代替。


图 4


图 5


图 6

About the power supply, the filaments can be powered by AC or DC except that the 3A5 (version 2 of the amplifier) requires a DC filament supply. Each supply has a timed relay that mutes the audio output until the tubes stabilize. I have designed 3 different power supplies - regulated, passive and cheap passive:
就电源而言,灯丝用交、直流供电均可,但是版本二中的3A5除外,它必须用直流供电。每种电源都带有延时继电器,它在电子管进入稳定工作状态之前使输出静音。我设计了三种电源-稳压电源、被动式电源和廉价被动式电源:

  • 图4所示稳压电源根据Technics的线路设计,用一只IRF MOSFET和一只Motorola BUX48功率三极管复合成达林顿管,构成虚拟电池。MOSFET/NPN复合管在400V时可达15A,可以轻松地控制大容量电容的涌动电流。BUX48应加散热器,它的功耗有6W。
  • 图5是全部采用被动元件的电源,使用了昂贵的扼流圈。
  • 图6是一个“廉价”的版本,用图7所示的慢启动灯丝电路,并提供延时。
输出端的延时时间为150秒或2.5分钟(RC = 330K * 470uF时),它避免了开机的冲击声。延时继电器用12VDC DPDT(最大负载7-10A),阻抗大约150欧。如何连接,请参见图3a图3b。


图 7

本机灯丝不用直流供电时也没有什么噪声。不过,为了使灯丝电压更加稳定,我建议用图7的慢启动电路来代替图4和图5的线路。并且,版本二的3A5要求使用直流灯丝供电,此电路也最为适合。慢启动电源可以延长电子管的寿命!MJ15004需要加装散热器,它的功耗是12W。

这里有慢启动电源的全尺寸的印刷线路板图。下面是安装示意图和推荐的机壳布局结构。

效  果

放大器的部分指标(采用稳压电源):

  • 增益    21.5db
  • 输出阻 33欧
  • THD = 0.88% 输出电压 = 9.5v 负载 300 欧 => 200 mW
      0.40% 输出电压 = 5.9v 负载 300 ohm => 80 mW "Sennheiser 580的最大功率"
      0.17% 输出电压 = 2.9v 负载 300 ohm => 15 mw
      0.07% 输出电压 = 1.2v 负载 300 ohm => 2.5mw
  • 频响    0.7Hz to 1GHz

图 9

图9显示出THD(失真)在9.5V、2.9V和1.2V情况下的衰减情况。太完美了!它们显现出线形的谐波衰减(功率越小失真就越低)。

附  注

9/17/98:改进图4稳压电源:用MOSFET/BJT达林顿管代替单只MOSFET,更好地控制大容量电解的涌动电流。改进图4和图5:灯丝接地,断开图3的“E”点。增加电源的“廉价”版本(图6)。

9/22/98:增加放大器的第二版(图3b),修改电源电路(图4、5、6和7)。

9/24/98:在放大器电路中增加Rin(图3a和图3b),从慢启动电源中取消6VDC输出(图7)。校正R7的阻值,改正版本二电路图中V1的拼写错误DCC90。

9/29/98:改进版本二的电路(图3b)-增加R8,R9。改进慢启动灯丝电源(图7)。增加7x22K电阻的安装示意图(图3c),增加机壳示意图。增加有关电容选择的一段。

9/30/98:增加印刷线路板图。

10/15/98:增加6SN7耳机放大器版本。提醒BUX48和MJ15004要装散热器。

关键字:顶级电子管  OTL耳机  放大器 编辑:神话 引用地址:顶级电子管OTL耳机放大器

上一篇:斯巴克Cayin230C合并式晶体管放大器设计分析
下一篇:6-8W双音频功率放大电路HA1394

推荐阅读最新更新时间:2023-10-12 20:46

实现精密二分压电路功能的放大器
实现二分压电路的经典方法是使用两只阻值相等的电阻器。如果使用精度为1%的电阻器,则二分压器的输出电压精度为2%。对于大多数应用来说,这一精度经济实惠,足以满足所需。但是,当你需要极高的精度时,这种方法就需要相应精密的电阻器,因而可能需要增加成本。给仪表放大器加上反馈回路,便可获得一个二分压电路,而且具有缓冲输出的好处(图1)。这一电路的工作原理很简单。该仪表放大器具有单位增益的特点,所以其输入端上的电压出现在VREF和VOUT之间;VOUT-VREF=VIN(+)-VIN(-)。但是,考虑到图1所示电路,请注意VOUT=VIN(-),VREF=0。代入第一公式,你就可以得到VOUT=VIN(+)-VOUT,2VOUT=VIN(+)
[模拟电子]
实现精密二分压电路功能的<font color='red'>放大器</font>
立体声放大器,立体声放大器的原理/选用/作用
立体声放大器,立体声放大器的原理/选用/作用 立体声放大器的基本原理电路 图1 为一种立体声音频放大器原理电路。在分析电路时,首先应了解电路的各元器件的功能,然后从输入端开始,以主要信号的流向为线索,将电路按功能分成几种实验内容,立体声放大器左右声道电路上下对称,因此只需分析一个声道。信号由信号源输入,经音量电位器(GH)分得一定的信号后由平衡电位器对地平衡,连接到运算放大器同相端放大后输出,再经前置三极管放大输入功放三极管放大输出。 立体声放大器的选用 (1)确定功率 一间15 平方米的视听室,平时以1W 的额定功率放音,对听新闻节目已经够用,但欣赏音乐则需要有足够的功率储备。从
[模拟电子]
立体声<font color='red'>放大器</font>,立体声<font color='red'>放大器</font>的原理/选用/作用
塔顶放大器
塔顶放大器 定义 本技术规范书采用下列定义: 前向(下行)链路是指由基站到移动台传输的链路。 反向(上行)链路是指由移动台到基站传输的链路。 800MHz、900MHz、1800MHz塔顶放大器是指由带通滤波器、低噪声放大器或高功率放大器等器件组成的用于800MHz、900MHz、1800MHz GSM 移动通信网的高性能射频放大设备(TMA)。 塔顶放大器主要包括:单向塔顶放大器和双向塔顶放大器。 单向(双工)塔顶放大器:指由带通滤波器、低噪声放大器等器件组成的高性能射频放大设备。通常紧靠接收天线下方安装,用于补偿上行馈线、双工滤波器等造成的损耗,改善上行接收系统的噪声系数,提高基站接收灵敏度。 双胞
[模拟电子]
高保真BTL放大器的原理及设计
本文介绍一种无需调试、保真度高、成本低廉的BTL功率放大电路,并且可以根据自己的情况选取末级功放集成电路,由于通用性强,给音响爱好者制作带来极大方便。   工作原理 高保真 BTL放大器 (TDA2009) 。这里只给出了其中一个通道的电路图,另一个通道完全相同。音频信号从电路的A端输入,经运算放大器IC1放大后(放大倍数由R1、R2决定),一路经IC2作反相放大,其增益为1;另一路经IC3、IC4作两次反相放大,增益仍然为1,其实质是IC3、IC4共同构成增益为1的正相放大器,所以在IC2的B端和IC4的C端得到的是两个大相等而相位相反的音频信号。这两个互为反相的音频信号分别通过R9、C5和R10、C6加到双音频功
[模拟电子]
高保真BTL<font color='red'>放大器</font>的原理及设计
采用固定增益集成型电阻器实现至差分放大器的阻抗匹配
配有计算公式的单端至 50? 输入差分放大器实例。采用 AC 耦合时阻抗匹配是仅有的问题。另外,AC 耦合还可实现自动的输入至输出共模电平移位。   
[模拟电子]
采用固定增益集成型电阻器实现至差分<font color='red'>放大器</font>的阻抗匹配
一种应用于汽车的D类放大器设计方案
  随着高传真音响系统体积越来越大、功耗越来越高,对D类音讯放大器进行重新设计,将可满足汽车音响设计特殊挑战。对车用资讯和资讯娱乐系统而言,其功能和子系统的不断增多,对车前部和车身的音响功率预算要求已达极限。汽车音响设计师在寻找高性能、低成本方案。对许多应用来说,采用超高效率的D类音讯放大器可能是最佳选择。   特别是对高阶汽车来说,多声道、多扬声器系统已成为标准配备。汽车音响工程师所面临的设计挑战包括:保持甚至超越顾客对极高音响放大器水准及超低失真的期待;以及为因应向双甚至三声道扬声器系统和重低音转变的趋势,需要更高功率的设计。   与家庭娱乐系统的音响放大器不同,设计工程师无法简单地加大功率,同时找到一种可控制音讯
[汽车电子]
一种应用于汽车的D类<font color='red'>放大器</font>设计方案
高频磁放大器
 磁放大器可用作高可靠性的 控制 元器件,过载时它有较强的抑制浪涌电压的能力。磁放大器磁心的尺寸会随 开关 频率的增大而反比例减小,当 开关 频率为50kHz以上时,磁放大器的尺寸已比得上 半导体 开关元器件,而且,由于是 驱动 频率的半个周期,因此,磁放大器的响应时间也会随着开关频率的增大而反比例变短。采用磁放大器的最大优点是可以抑制二极管截止时由于存贮时间产生的浪涌电流。   图所示为磁放大器式开关稳压器与二极管的恢复特性。图(a)所示 电路 中,逆变器将直流电压变换为交流电压,通过变压器T1与半波式磁放大器LA进行耦合。磁放大器将逆变器输出电压的变化部分(误差)作为其输入信号,从而对输出电压进行调整使其稳定。逆变器可采用多
[模拟电子]
Credo推出用于光收发器/AOC的四通道跨阻放大器
超低功耗TIA,配合Credo光DSP芯片及激光驱动器一起,为超大规模数据中心及网络设备OEM提供完整的光芯片组解决方案 加州圣何塞和中国深圳, 2023年9月5日——Credo Technology是一家提供安全、高速连接解决方案的创新企业。 Credo致力于为数据基础设施市场提供其所必需的高能效、高速率解决方案,以满足其不断增长的带宽需求。Credo今日发布新品:4x50G跨阻放大器(TIA)芯片—— Teal 200,该芯片可用于QSFP56/QSFP-DD 光模块及 AOC,适用于AI及超大规模数据中心等具有高容量,低功耗需求的应用场景。Teal 200支持使用50Gbps PAM-4调制的200Gbps SR4/DR
[模拟电子]
Credo推出用于光收发器/AOC的四通道跨阻<font color='red'>放大器</font>
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved