为了验证图像处理算法的精度, 采用了激光测距传感器对焊缝的实际位置进行了精确定位。
在工装一侧竖立一块表面光滑且与焊缝平行的金属板, 然后对机器人示教一条准确的沿焊缝路径,并在变形不大的厚板上进行试验。 起弧后, 激光测距传感器开始工作, 得到实时焊缝位置, 并与经过图像处理所得到焊缝位置进行对比, 结果如图3 所示, 中部的水平直线为示教焊缝路线, 折线为经过图像处理算法纠偏的焊枪实际路径。
对比显示, 本文中图像处理算法所得到的焊缝位置与实际焊缝位置的误差在 0. 15 mm 以内。
综上所述, 根据试验分析和计算机数字图像处理本身固有的误差, 可以确定本文研究的焊接过程的图像处理方法的精度能够控制在 0. 15 mm 范围内, 完全满足实际焊接的需求。
1. 3 焊缝跟踪原理及实现
跟踪方法原理是, 固定视觉传感器在焊枪正前方, 通过直接观察焊枪与焊缝中心线的位置关系, 提取偏差信息, 输出纠偏控制电压。
由于铝合金具有较强的反光性, 在熔池前端区域有一个反光区, 检测的间隙与实际间隙大小差异很大, 甚至无法看清, 所以, 本次项目检测的焊缝中心距离熔池中心具有一定距离, 需通过曲线拟合的方法才能计算出当前焊接位置的焊枪与焊缝中心的偏差量, 如图4 所示。
1. 4 控制器设计
1. 4. 1 纠偏电压与纠偏量关系建模
由于首钢Mo toman 系列机器人纠偏卡是不开放的, 无法得知其运动细节, 建模可以使该过程简单化。 对纠偏系统进行建模后, 使用Mat lab 的Simulink 工具对控制器进行离线设计。 经过试验, 在机器人运动过程中,在单位时间内随机给出不同的纠偏电压, 并记录该纠偏电压下的偏差量。 选取连续的3 组共383 对数据作为样本空间。 使用Mat lab 对3 组数据进行建模, 得到了1 个线性回归模型, 其对3 组数据都有很高的适配度, 分别为82. 3% , 97. 16% 和95. 99%.
1. 4. 2 模糊PID 控制器设计
为了研究纠偏对焊接效果的影响, 分别用1 V、1. 5 V、2 。 5 V、3 V 的恒定纠偏电压信号进行纠偏。 试验表明, 纠偏电压为1 V 时, 由于纠偏力度太小, 虽然在执行纠偏, 但是偏差仍旧越来越大, 甚至在末段由于偏差太大, 超出可纠偏范围, 图像处理程序出错, 得到错误的偏差信号; 当纠偏电压是1. 5 V 时, 其表示出来的偏差情况与1 V 分析出来的一样, 因此, 1. 5 V 仍然电压偏小; 当使用2. 5 V 纠偏时, 就没有使用1. 5 V 时的偏差特征, 此时, 偏差基本上在0 附近波动; 当纠偏电压达到3 V 时, 偏差依旧在0 附近波动, 但是波动的幅值明显增大, 实际上焊枪在焊缝附近产生了较大的振荡, 必将导致较差的焊缝成形。
为了既保证稳定焊接, 又能快速纠偏, 设计了模糊PID 控制器 。 该控制器的思想是, 在不同的环境下, 调整PID 3 个参数的值, 使纠偏系统满足下列要求: 一是在偏差量较小时, 进行精细调节, 以防止超调和保持系统稳定为主要目标; 二是在偏差量较大时, 进行大步长纠偏, 使钨极尽快回到正常范围附近, 响应时间越短越好。
根据控制系统的稳定性和准确性原则, 为了提高控制器的稳定性和抗干扰性, 引入了误差预测, 即偏差量对时间的2 阶导数作为第3 输入量, 将该模糊PID 控制器改进为3 输入3 输出的控制器。
2 结果与分析
2. 1 平板直缝跟踪试验结果
本文设计了如图5 所示的双折线路径, 焊缝为2 块无坡口平板对接焊缝, 没有明显间隙, 示教轨迹与真实焊缝的偏差量控制在6 mm 范围内。 其中,双折线为实际示教路径, 中间的平直线为实际焊缝路径, 实际焊接路线为平直线周围波动的曲线。
试验结果表明, 跟踪控制效果非常明显, 尽管示教轨迹与焊缝中心有最大6 mm 的焊缝偏差, 但是通过焊缝自动跟踪系统的纠偏调节, 使枪尖投影点与焊缝中心的偏差能够控制在 0. 15 mm 范围内。
考虑到图像处理的误差, 实际跟踪误差在 0. 3 mm内。2. 2 法兰环缝跟踪试验
机器人进行了法兰的简易示教, 即1 圈只示教4 到5 个点, 随后进行跟踪试验, 同时对试验中所采集到焊缝偏差量数据进行了记录。 图6 为试验结果分析, 验证了法兰试验件焊接过程中焊缝跟踪控制技术的有效性。
试验结果数据显示其跟踪误差略大于平板焊接, 最大误差达到了 0. 2 mm. 考虑到图像处理误差, 真实误差在0. 35 mm 内。
3 结语
以弧焊机器人在脉冲T IG 焊接过程中应用的需求为研究背景, 以被动视觉作为传感方式, 研究了实时焊缝跟踪控制技术, 并且在生产中得到验证:
( 1) 设计集成了焊接机器人系统, 将原有的“示教再现”型机器人成功改造成具有视觉功能的、能够实时自动焊缝跟踪的焊接机器人系统。
( 2) 设计了相应的图像处理算法, 能准确提取焊缝边缘并拟合焊缝中心线。
( 3) 提出了一种基于视觉的实时焊缝跟踪方法, 在保证焊接过程稳定的前提下研究了焊缝跟踪算法, 建立了适合焊接过程的模糊PID 实时焊缝跟踪控制器。 试验表明: 实时跟踪直线焊缝和曲线焊缝, 跟踪最大偏差分别可以控制在0. 3 mm 和 0. 35 mm 以内.
上一篇:基于视觉传感的焊缝跟踪技术(一)
下一篇:常用eda软件orcad、ewb、protel和pads对比介绍
推荐阅读最新更新时间:2023-10-12 20:48