电路功能与优势
本文所述电路旨在优化AD7328的性能。所选的运算放大器和基准电压源能够提供低阻抗驱动、充足的建立时间,以及精密基准电压源,可确保AD7328发挥最大性能。
图1:单端转差分输入
电路描述
在特别注重谐波失真和信噪比特性的应用中,AD7328的模拟输入端应采用低阻抗源驱动。较大源阻抗会显著影响该ADC的交流性能,并且可能要求用一个输入缓冲放大器。不用放大器来驱动模拟输入端时,应将源阻抗限制在较低的值。由于AD7328的模拟输入具有可编程特性,因此选择驱动输入端的运算放大器时,主要取决于特定应用以及输入配置和所选的模拟输入电压范围。
差分工作要求用两个相位相差180°的等幅信号,同时驱动VIN+和VIN−。并非所有应用都会预先调理信号以供差分工作,因此经常需要执行单端至差分转换。可以用图1所示的运放对进行单端至差分转换。AD8620是一款理想的运算放大器,可以用来为AD7328提供一个单端转差分驱动器。AD8620是一款精密、低输入偏置电流、宽带宽JFET运算放大器(双路)。
图1所示的电路配置说明如何用AD8620运算放大器,将单端信号转换为差分信号,以便施加于AD7328的模拟输入端。V+和V-点的信号具有相等的幅度,但相位相差180°。
AD7328总共有8个单端模拟输入通道。图2显示ADC以单端模式工作时的典型连接图,其中AD797用来缓冲信号,再将信号施加于ADC的模拟输入端。
图2:单端工作模式
AD7328的模拟输入通道可通过独立编程,接受四种输入范围之一。AD7328可以接受±4 x VREF、±2 x VREF、±VREF和0至4 x VREF的输入信号。
AD7328允许将外部基准电压施加于REFIN/REFOUT引脚。基准电压的额定输入电压范围为2.5 V至3 V。用2.5 V而不是3 V基准电压时,AD7328能够接受较大的输入信号。在以上两幅电路图中,AD780均用作外部基准电压源。AD780是一款2.5 V/3 V超高精度基准电压源,可灵活选择电压范围。
常见变化
适合AD7328的基准电压源包括REF192、 AD1582、ADR03、 ADR381、 ADR391、和ADR421。双通道、高速、低噪声运算放大器AD8022 也适合需要双运放的高频应用。在高性能系统中,也可以用一对AD8021s(AD8022的单通道型号)代替AD8022。对于较低频率的单端应用,诸如AD797 (单通道)和AD8610(单通道)、AD8620 (双通道)、AD8599 (双通道)以及ADA4941-1 (单端转差分)等运算放大器也是合适的替代产品。
关键字:单端 8通道 ADC AD7328
编辑:神话 引用地址:在单端应用中使用8通道ADC AD7328
推荐阅读最新更新时间:2023-10-12 20:50
不损失SNR前提下 高压信号转换成低压ADC输入
模/数转换器(ADC)电路设计中,特别是当系统设计人员需要处理各种摆幅的电压信号时,很容易产生的一个误区是缩小输入信号范围,以适应ADC的满量程范围,这将大大降低信噪比(SNR)。综合来看,相对于高压ADC,低压(5V或者更低)ADC的选择范围更宽。高电源电压通常会导致大的功耗,电路板设计也更加复杂,例如,需要使用更多的去耦电容。这篇应用笔记讨论了由于信号缩小所引起的SNR损失,如何量化这些损失,以及如何减小这些损失。
很多传感器或系统输出为高压或双极性消耗,比如,常见的±10V。当然,可以通过一些简单的方法将这些信号送入ADC,进而利用高压ADC处理这些宽范围输入信号,不会造成SNR损失。这些方案通常需要额外的高压电源
[模拟电子]
STM8 模拟/数字转换器(ADC) 转换模式
STM8模拟/数字转换器(ADC)转换模式 ADC支持5种转换模式:单次模式,连续模式,带缓存的连续模式,单次扫描模式,连续扫描模式。 单次模式 在STM8的ADC单次转换模式中,ADC仅在由ADC_CSR寄存器的CH 选定的通道上完成一次转换。该模式是在当CONT位为0时通过置位ADC_CR1寄存器的ADON位来启动的。 一旦转换完成,转换后的数据存储在ADC_DR寄存器中,EOC(转换结束)标志被置位,如果EOCIE被置位将产生一个中断。 连续和带缓存的连续模式 续转ADC在完成一次转换后就立刻开始下一次的转换。当CONT位被置位时即在连换模式中,将ADC设为连续模式,该模式是通过置位ADC_CR1寄存器的ADON
[单片机]
Teledyne e2v率先推出完全符合太空应用标准的四通道ADC
法国格勒诺布尔 - Teledyne e2v凭借能够提供极高可靠性的混合信号技术,继续应对最具挑战性的应用场景。该公司的EV12AQ600刚获认可为业界首个具备太空部署资格的4通道模数转换器(ADC)。 经过全面测试,EV12AQ600已经证明,它可以承受150kRad的总电离剂量(TID)。TID和SEE的这些结果证明,这种装置非常适合长生命周期任务或GEO卫星等太空应用。此外,ADC还严格通过多轴机械冲击和振动试验,外加静电放电(ESD)、极端温度和热循环试验程序。成功地通过上述所有测试后,它现在满足美国宇航局和欧空局的要求,符合严格的MIL-PRF-38535(QML-Y)和ESCC 9000标准。 Teled
[模拟电子]
解析模数转换器(ADC)不同类型数字输出
在当今的模数转换器(ADC)领域,ADC制造商主要采用三类数字输出。这三种输出分别是:互补金属氧化物半导体(CMOS)、低压差分信号(LVDS)和电流模式逻辑(CML)。每类输出均基于采样速率、分辨率、输出数据速率和功耗要求,根据其工作方式和在ADC设计中的典型应用方式进行了论述。本文将讨论如何实现这些接口,以及各类输出的实际应用,并探讨选择和使用不同输出时需要注意的事项。此外还会给出关于如何处理这些输出的一般指南,并讨论各类输出的优劣。
基本知识
使用数字接口时,无论何种数字输出,都有一些相同的规则和事项需要考虑。首先,为实现最佳端接,接收器(FPGA或ASIC)端最好使用真正的电阻终端。接收器端的反
[模拟电子]
LPC1788--ADC连续中断多通道转换程序学习分析
LPC1788的ADC转换可以单次转换-也可以连续转换---可以轮询--也可以中断---这里使用的是中断连续转换3个通道的AD值----主要是对AD控制寄存器CR的设置与中断函数中对AD通道的判断。 在主函数中只需要调用初始化函数与在循环采集中不停打开ADC中断--因为在中断函数中为了防止中断嵌套禁止了ADC中断 /////////////////////////////////////////////////////////// void main(void) { uint32_t i; ADC_Init(60000000,4000000); //初始化---外设时钟60M--ADC转换频率4M while
[单片机]
stm32f0 hal adc配置
Clock Prescaler:和系统时钟同步并且二分频 Sampling Time :采样时间,采样时间是你通过寄存器告诉STM32采样模拟量的时间,设置越长越精确
[单片机]
Windows CE.NET下ADC驱动开发设计
1 前言
Windows CE 是为各种嵌入式系统和产品设计的一种压缩的、高效的、可升级的操作系统。多线性、多任务、全优先的操作系统环境是专门针对资源有限而设计的,它的模块化设计使嵌入式系统开发者和应用者能够将其应用于各种产品,例如家用电器、专门的工业控制和嵌入式通信设备等。Windows CE 支持各种硬件外围设备及网络系统,应用领域极为广阔,是微软专门为信息设备、移动通讯、电子产品、嵌入式应用等非 PC 领域而专门设计的一种战略性操作系统产品。
2 Samsung ARM 系列S3C2410 处理器
S3C2410 是Samsung 公司推出的基于ARM920T 核的32 位RISC 微处理器
[单片机]
ADI发布5 GHz 低功耗差分放大器
Analog Devices, Inc. (NYSE: ADI),全球领先的高性能信号处理解决方案供应商及放大器和数据转换技术领先者,最近推出业界首款能够驱动 DC 至1 GHz(千兆赫兹)ADC(数模转换器)信号的5 GHz 差分放大器 ADA4960-1,其功耗仅为竞争产品的一半。ADA4960-1差分放大器是一款高性能、低失真、超高速差分放大器,可有效支持各种10位线性度、最高500 MHz(兆赫兹)和8位线性度、最高1 GHz 的高速 ADC。它能驱动各种各样的 ADC,例如ADI 公司的12位 ADC AD9626 和10位 ADC AD9211 。
当工作频率高达1 GHz时,ADA4960-1差分放
[模拟电子]