可稳定放大1001倍的斩波放大器
电路的功能
斩波放大器用来测量微弱的电压,过去一直采用机械式斩波放大器,后来改为半导体开关式,使放大器具有良好的直流特性。现在大多使用单片斩波稳定的OP放大器。它具有普通放大器得不到的失调电压及温度漂移等特性。
若在数百赫的波段斩波,则宽带噪声很高,各级电路不加低通滤波器电路就不能使用。所以本电路适合在信号频率低、电压很小的情况下使用。
电路工作原理
MAX420是一种单处斩波OP放大器,电源电压为正负15V(ICL7650电源电压为正负15V),具有良好的输入特性。输入失调电压1UV、输入漂移0.02UV/度,输入偏流100PA,输入电阻10的12次方欧,开路增益150DB等,这些都是25度时的标准参数,普通差动放大器是得不到这样的参数值的。
相反,它的交流特性却不太好。在转换速度为0.5V/US、GB积为500KHZ、输入换算噪声是以在DC~10HZ的窄频带下,电平为1.1UVP-P、加低通滤波器为前提条件的。
它与普通OP放大器的不同之点在于必须有2个电容器(C2,C3)用来保持失调电压为0,斩波频率约400HZ。
开路增益很大,为150DB,即使选定A=1001倍,仍可得到151-60=90DB的环路增益,所以这是一种工作稳定、输入电阻很高、适用于高精度的放大器。
因为A1的输入失调电压放大1001倍以后为1MV,所以可用后级的低通滤波器调零。
输入信号很小,所以要在A1输入端并联C1,滤除高频。C1的值根据使用环境确定。至于RF噪声的滤除,采用LCN型滤波器效果很好。
低通滤波器选定A=1,如果标准电容为CO,则C4应为√2C0,C5应为C0√2。根据R4=R6=1/2XF0C0公式计算,F0=10HZ时,R4、R6约为100K。
MAX420的消耗电流为1.3MA,若使用低功率的TL061滤波放大器,输入电流在2MA以内就可使整个电路工作。
元件的选择
电阻R2、R3对放大精度稳定性起决定作用,所以要选用温度系数小(正负1%以内)的电阻。R3为1M,也需要稳定性好的电阻,但这种电阻价格很贵,在有些情况下,R2取100欧,R3=100K也是要以的。
C2、C3最好选用绝缘电阻高的电容器。聚酯薄膜电容可以达到使用要求,但不要使用高电容率真的陶瓷电容。
在本电路中,低通滤波器的参数对特性并蒂莲起决定作带,因此,稍有误差也不会有什么影响。
应用注意事项
因为本电路消耗功率低,使用隔离放大器的辅助电源以后,整个电路可作为浮动的高增益隔离放大器。由于本电路频带很窄,只有10HZ。可作为灵敏度高的记录仪前置放大器。
关键字:可稳定 放大 斩波 放大器
编辑:神话 引用地址:可稳定放大1001倍的斩波放大器
推荐阅读最新更新时间:2023-10-12 20:52
便携式麦克风前置放大器
便携式麦克风前置放大器 (Portable Microphone Preamplifier)
Parts:
P1______________2K2 Linear Potentiometer
R1,R2,R3______100K 1/4W Resistors R4______________8K2 1/4W Resistor R5_____________68R 1/4W Resistor R6______________6K8 1/4W Resistor R7,R8___________1K 1/4W Resistors R9____________150R 1/4W Resistor
[模拟电子]
差动放大电路的改进
由式GS0512可知,要想提高差动 放大电路 的共模抑制比,就要增大共模负馈电阻Re,但增大Re会使其直流压降增大,要保持合适的静态工作点,EE就要增大很多,这显然是不经济的。
恒流源电路具有输出电阻很高而直流压降较小的特点,若用恒流源电路代替图Z0502电路中的Re,就可在EE不高的情况下,获得很高的共模抑制比。图Z0506(a)就是一个带有恒流源的差动放大电路,图(b)是它的简化表示。
图中,T3是恒流管,R1、R2、D是它的偏置元件,Re是负反馈电阻,用以提高恒流源电路的输出电阻。由于偏置电路一定,IB3就随之确定,IC3=βIB3,也就确定(T3管工作在放大区)当UCE3变化时,由于IC3几乎不
[模拟电子]
一种自适应耦合TV和高阶PDE的图像放大模型
摘要:针对TV模型存在分块效应,而四阶PDE模型具有保持平坦区域光滑性的特点,提出自适应耦合TV和四阶PDE的正则化图像放大模型。根据图像内容合理调整耦合系数,在图像渐变和平坦区域运用四阶PDE扩散,消除分块效应;而在图像的突变区域运用TV模型滤波,保持突变边缘。实验结果表明,该算法是一种有效的图像放大方法。 关键词:图像放大;偏微分方程;总变分;高阶PDE 0 引言 图像放大指增大图像尺寸或提高其分辨率,同时保持较高的质量,以得到一个较好的视觉效果,或突出某些细节。图像放大通常可分两步进行:首先对图像进行空间变换;其次对图像进行灰度级插值、处理。 传统的线性插值算法有最近邻法、双线性插值法以及三次样条插值法等。这些方法用
[工业控制]
TI推出业内速度最快的16位ADC、14位ADC和数字可变增益放大器
日前,德州仪器 (TI) 宣布推出业界首款16位1 GSPS模数转换器 (ADC) ADS54J60,这也是业内首例在1 GSPS 采样速率下实现超过70 dBFS信噪比 (SNR) 的模数转换器。另外,TI 还推出了最高密度的四通道14位500 MSPS 数转换器 ADS54J54。为了优化信号链,TI 的新型LMH6401 4.5 GHz全差分数字可变增益放大器 (DVGA) 提供了最宽的带宽和DC耦合,并实现了低频和高频信号采集,此外,还不受 AC 耦合型系统中使用的平衡-不平衡变压器带来的限制。这些模数转换器与放大器配合工作,可在国防、航天、测试与测量、以及通信基础设施等应用中提供最高的性能、最低的功耗并节省空间
[电源管理]
该如何避免轨到轨CMOS放大器的不稳定性
从数十年前被发明以来,MOS晶体管的尺寸已经被大大缩小。门氧化层厚度、通道长度和宽度的降低,推动了整体电路尺寸和功耗的大大减少。由于门氧化物厚度的减小,最大可容许电源电压降低,而通道长度和宽度的缩减则缩小了产品的外形并加快了其速度性能。这些改进推动了高频率CMOS轨到轨输入/输出放大器的性能发展,以满足当今系统设计者对于某种新型模拟电路日益增加的需求,这种电路必须能够以和数字电路同样低的电源电压进行工作。
本应用笔记解答了有关最新一代CMOS轨到轨放大器的一些独特问题。文章一开始大致讨论并讲述了传统电压反馈和电流反馈放大器电路的拓扑,以及导致反馈放大器振荡的最常见原因。为了方便分析和讨论,我们将CMOS轨到轨放大器电
[模拟电子]
隔离式放大器是如何代替光耦合器/分流调节器的
设计人员设计 隔离式 AC-DC、DC-DC或DOSA兼容型电源模块时,面临着以更佳的性能应对市场需求的挑战。本文介绍数字隔离器误差放大器,它可改进初级端控制架构的瞬态响应和工作温度范围。传统的初级端控制器应用是利用 光耦合器 提供反馈回路隔离,利用分流调节器提供误差放大器和基准电压。虽然光耦合器作为隔离器用于电源中具有成本低廉的优势,但它会将最大环路带宽限制在50kHz,而且实际带宽会低得多。快速可靠的数字隔离器电路在单封装内集成隔离式误差放大器和精密基准电压源功能,使用该电路可实现极低温漂和极高带宽的精密隔离式误差 放大器 。隔离式误差放大器能实现250 kHz以上的环路带宽,使得以更高开关速度工作的隔离式初级电源设计成为可能
[电源管理]
罗姆推出抗噪声性能车用运算放大器
罗姆半导体(ROHM)针对EV/HEV引擎等核心系统和采用车用传感器的汽车电子系统,开发出在电磁干扰(EMI)耐受力(以下简称抗噪声性能)上,具有绝对优势的车用感地运算放大器--A8290xYxx-C系列( BA82904YF-C/BA82904YFVM-C/BA82902YF-C/BA82902YFV-C)。 BA8290xYxx-C列是汇集了ROHM的电路设计布局制程等三大模拟技术优势所开发而成,在所有频段的输出电压变动上,与一般产品的±3.5%~±10%相较之下,仅在±1%以内、可说是在抗噪声性能上具有绝对优势的运算放大器。 配置于输出传感器等微小讯号的组件后段,可不受噪声影响而放大讯号,因此不再需要滤波器作为噪声设计对策,
[半导体设计/制造]
陶瓷扬声器系统的放大器设计
如今的便携式设备需要更小、更薄、更省电的电子元器件。对于设计小巧的手机,动圈式扬声器成为了制造商能否生产出超薄手机的制约因素。在这一需求的推动下,陶瓷或压电扬声器迅速兴起,成为动圈式扬声器的替代方案。陶瓷扬声器能以超薄、紧凑的封装提供极具竞争力的声压电平(SPL),具有取代传统的动圈式扬声器的巨大潜力。动圈式扬声器和陶瓷扬声器的区别如 表1 所示。
表1.陶瓷扬声器和动圈式扬声器的优点和缺点
Ceramic Speakers
Dynamic Speakers
Advantages
Disadvantages
Advantages
Disadva
[工业控制]