差动放大电路的改进

最新更新时间:2013-08-26来源: 21ic关键字:差动放大电路  恒流源 手机看文章 扫描二维码
随时随地手机看文章

1.jpg

由式GS0512可知,要想提高差动放大电路的共模抑制比,就要增大共模负馈电阻Re,但增大Re会使其直流压降增大,要保持合适的静态工作点,EE就要增大很多,这显然是不经济的。

恒流源电路具有输出电阻很高而直流压降较小的特点,若用恒流源电路代替图Z0502电路中的Re,就可在EE不高的情况下,获得很高的共模抑制比。图Z0506(a)就是一个带有恒流源的差动放大电路,图(b)是它的简化表示。

 1.jpg

图中,T3是恒流管,R1、R2、D是它的偏置元件,Re是负反馈电阻,用以提高恒流源电路的输出电阻。由于偏置电路一定,IB3就随之确定,IC3=βIB3,也就确定(T3管工作在放大区)当UCE3变化时,由于IC3几乎不变,则等效交流电阻2.jpg 将很高而保证T3工作在放大区所需的UCE3 并不高,一般只要UCE3 ≥1V即可。

对恒流源差动放大电路进行静态分析时,应从恒流源电路着手,先确定出IC3,进而可确定出IC1=IC2=IC3/2及 UC1=UC2=EC - IC1RC(对地)等。关于差模放大倍数、共模放大倍数及共模抑制比的计算方法同前面介绍的方法一样,仅是用恒流源的输出电阻替代了Re。

例题0502 图Z0507是某集成电路的输入级原理电路。已知三极管的β均为100,三极管的UBE和二极管的压降UD均为0.7V,Rc= 7.75kΩ,RL =11.2kΩ,Rb1 = 1.5kΩ,Rb2 = 3.2kΩ,Re = 2.2kΩ,EC = EE = 6V

(1)估算静态工作点Q;(2)估算差模放大倍数;(3)估算差模输入电阻rid和差模输出电阻ro 。

解:(1)若忽略T3管的基极电流,则流过Rb1 的电流为:

3.jpg

流过T3管发射极的电流为

4.jpg

自此可得:

5.jpg

(2)双端输出时的差模放大倍数为:

1.jpg

(3)差模输入电阻和输出电阻分别为:

rid= 2rbe = 2×5.6 = 11.2kΩ ro = 2RC = 2×7.75 = 15.5 kΩ

在实际应用中,差动放大电路还有单端输入-双端输出及单端输入-单端输出等连接方式,其原理可参阅有关资料自行分析。

关键字:差动放大电路  恒流源 编辑:冯超 引用地址:差动放大电路的改进

上一篇:凌力尔特推出具有自校准电路的零漂移放大器LTC2057HV
下一篇:多级放大电路的分析方法

推荐阅读最新更新时间:2023-10-12 20:46

高功率LED恒流源串联驱动器的设计
引言   随着大功率LED的问世,因其发光效率是一般荧光灯或白炽灯的5~7倍,节能效果十分显著。因而,大功率LED具有广泛的应用前景。目前,单个大功率LED已有1W、3W、5W和10W,已被大量使用的是1W和3W的大功率LED,采用多个大功率LED串联和并联,其组合输出功率已达70W~100W。   大功率LED虽具有发光效率高和节能的优点,但其管压降的不一致却是需要克服的缺点。其次,大功率LED的温度特性较差。随着结温和环境温度的改变,其管子的电流和发光效率变化很大,这也给使用带来了不便。   由于大功率LED存在以上缺点,人们在使用时多采用两种驱动方案:1.恒压源驱动。即采用多个LED并联后用恒压源驱动。这样,由于LED的管压降
[电源管理]
集成功率级LED与恒流源电路一体化设计
1 引言 目前,功率级LED产品有两种实现方式:一是采用单一的大面积功率级LED芯片封装,美国、日本已经有5W芯片的产品推向市场,需要低压大电流的恒流驱动电源供电,其价格也比较高;另一种是采用小功率芯片集成方式实现功率级LED,日本松下电工已经开发出20W的集成LED产品。然而由于功率级LED在低压大电流条件下工作,对于远距离的恒流驱动电源供电却存在着线路功耗大、系统可靠性低等许多难以解决的技术问题。 在承担的国家级科技攻关项目中,我们将新设计的DIS1xxx系列浮压恒流集成二极管与LED芯片通过厚膜集成电路工艺技术集成为一体,解决了集成功率级LED在使用中的恒流电源供电问题,其电流稳定度、温度漂移和可靠性等技术指标,
[电源管理]
MIC29152和双运放构成的恒流源电路
MIC29152和双运放构成的恒流源电路 如图所示的电路是采用MIC29152和一只双运放及其他元件构成的输出电流为1.0 A的恒流源电路。这种恒流源电路对Micrel公司的所有输出可调的稳压器均适合。
[电源管理]
MIC29152和双运放构成的<font color='red'>恒流源</font>电路
基于LabView的恒流源电路设计
  该恒流源电路使用运算放大器以及三极管组成电压-电流转换电路。其中,OPA211的主要功能是实现高精度V/I转换,三极管的主要功能是实现功率放大。如图2所示。   图2 恒流源控制电路   在图2中,电阻Rf是反馈电阻,为运算放大器的输入电压,为流经灯丝负载的电流。根据运算放大器的特性,控制电压:,因而流经负载的电流与负载无关。由于MAX530单极输出0~2.048V,因而其输出分辨率为0.5mV,且Rf=1Ω,故本设计的理论精度可达0.5mA。
[电源管理]
基于LabView的<font color='red'>恒流源</font>电路设计
1A 高稳定度恒流源的试制
1原理 作为精密直流测量系统,高稳定度的恒流源的设计是十分重要的。本系统采用的是集成运放反馈型恒流源电路,它通过负反馈作用,便加到比较放大器两个输入端的电压相等,从而保持输出电流的恒定 .图1是反馈型恒流源的电路及方框图,其中包括高速管理、采样电阻、基准电压、比较放大器等。在要求输出电流较大、精度较高的实际应用中,采用反馈型恒流源电路是行之有效的方法。 由图1(a)可知,比较放大器一个输入端是基准电压Us,另一端是负载电流I 0 ,采样电阻Rs的电压降I 0 R s ,若比较放大器两个输入电压暂时不等,其电压值被放大后,加到高速管的栅极( G)与源极( S )之间,从而改变调整管V GS 的值,由调整管的转移特性可知
[电源管理]
1A 高稳定度<font color='red'>恒流源</font>的试制
一种仪表用差动放大电路设计
这个差动放大器只需三个廉价的普通运算放大器和几只电阻器,即可构成性能优越的仪表用放大器。广泛应用于工业自动控制、仪器仪表、电气测量、医疗器械及其它数字采集的系统中。 电路图参见图1。 电路原理并不复杂。要使电路满足平衡,则R1=R2、R3=R4、R5=R6,因为每个运放的特性不可能完全一致,在A和A2的Pin1、Pin8我们增设了调零电位器VR1和VR2,这在实际的应用中是非常有用的。我们假设A1、A2的失配、失调电压和电流均为零的情况下,其差模电压增益为: 整个电路采用正负两组电源供电,这样可对正或负输入电压进行放大。电源电压一般可取±5—±15V,但对其稳定度有一定的要求。图1中的电容C用于除抖动和抗
[工业控制]
一种仪表用<font color='red'>差动</font><font color='red'>放大电路</font>设计
三相交流调压模块在线性调压式恒流源中的应用
摘要:某大功率恒流源,其负载为0.05~0.1Ω的感性或电阻性,输出电流200~500A连续可调,并对稳定度、准确度、重复性、纹波等技术指标均有较高要求。由于采用了三相交流调压模块,使调整管的管压降被控制在5~10V范围内,从而使调整管的数量成倍地减少,既简化了散热措施,优化了结构布局,而且达到了提高技术性能指标,增加可靠性的目的。 关键词:交流调压模块;恒流源;串联调压式 1引言 某项科研任务需用上百台500A恒流源,要求其有极高的可靠性、稳定度和低的纹波。其交流电网电压340~420V,负载在0.05~0.1Ω的大范围内变化,电流从200~500A连续可调,使用工控机进行控制。 从经验和可靠性考虑,确定采用线性
[电源管理]
三相交流调压模块在线性调压式<font color='red'>恒流源</font>中的应用
高精度半导体激光器驱动电源系统的设计
   O 引 言   半导体激光器(LD)是一种固体光源,由于其具有单色性好,体积小,重量轻,价格低廉,功耗小等一系列优点,已被广泛应用。LD是理想的电子-光子直接转换器件,有很高的量子效率,微小的电流和温度变化都将导致其输出光功率的很大变化。因此,LD的驱动电流要求非常高,必须是低噪声、稳定度高的恒流源,一般电源很难满足要求。此外,瞬态的电流或电压尖峰脉冲,以及过流、过压都会损坏半导体激光器。这里将以TI公司的DSP芯片TMS320F2812为控制核心,实现带有多种保护的双闭环高精度半导体激光驱动电源系统。    1 系统总体设计   恒流源一般采用集成运算放大器和一些分立元器件及单片机构成的“压控恒流源”方法实现,
[电源管理]
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved