低压驱动的RF MEMS开关设计与模拟

最新更新时间:2013-11-18来源: 互联网关键字:低压驱动  RF  MEMS  开关设计  模拟 手机看文章 扫描二维码
随时随地手机看文章

近年来射频微电子系统(RF MEMS)器件以其尺寸小、功耗低而受到广泛关注,特别是MEMS开关构建的移相器与天线,是实现上万单元相控阵雷达的关键技术,在军事上有重要意义。在通信领域上亦凭借超低损耗、高隔离度、成本低等优势在手机上得到应用。然而RF MEMS开关普遍存在驱动电压高、开关时间长的问题,劣于FET场效应管开关和PIN二极管开关。相对于国外已取得的成果,国内的研究尚处于起步阶段。下文将针对MEMS开关的缺陷做一些改进。

  1 RF MEMS开关的一般考虑

  当MEMS开关的梁或膜受静电力吸引向下偏移到一定程度时达到阈值电压,梁或膜迅速偏移至下极板,电压大小取决于材料参数、开关尺寸及结构。梁或膜的材料需要比较好的杨氏模量与屈服强度,杨氏模量越大谐振频率就越高,保证工作的高速稳定及开关寿命;尺寸设计上要考虑静电驱动力的尺寸效应;结构的固有振动频率则影响开关的最高工作速度。单从结构上看,降低驱动电压的途径为:降低极板间距;增加驱动面积;降低梁或膜的弹性系数。常见的结构有串、并联悬臂梁开关、扭转臂开关和电容式开关,前三者为电阻接触式,金属与信号线外接触时存在诸如插入损耗大等很多问题,而电容接触式开关的绝缘介质也存在被击穿的问题。有研究表明,所加电压越高开关的寿命越短,驱动电压的降低势必导致开关速度变慢,如何同时满足驱动电压和开关速度的要求是当前的困难所在。

  2 RF MEMS开关的模拟与优化

  对于电容式开关,驱动电压随着桥膜长度的增加而下降,桥膜残余应力越大驱动电压也越大。通常把杨氏张量78 GPa、泊松比O.44的Au作为桥膜材料,为获得好的隔离度要求开关有大的电容率,这里选介电常数为7.5的S3N4作为介质层,桥膜单元为Solid98,加5 V电压,电介质为空气,下极板加O V电压。然后用ANSYS建模、划分网格、加载并求解静电耦合与模态分析。5 V电压下的开关形变约为O.2 μm左右,尚达不到低压驱动要求。提取开关前五阶模态如图1所示。

  提取开关前五阶模态

  可见开关从低阶到高阶的共振频率越来越大,分别为79.9 kHz,130.3 kHz,258.8 kHz,360.7 kHz,505.6 kHz,一阶模态远离其他模态,即不容易被外界干扰,只有控制开关频率低于一阶模态的谐振频率才能保证其稳定工作。由于实际开关时间仍不理想,所以在膜上挖孔以减小压缩模的阻尼,从而增加开关速度。虽然关态的电容比下降了,但孔可以减轻梁的重量,得到更高的力学谐振频率。最终的模型共挖了100个孔,并对两端做了弯曲处理以降低驱动电压,仿真得到5 V电压下形变为1μm以上、稳定的开关时间在5μs以下的电容式开关,如图2所示。

  改进后的电容式开关

  考虑到电容式开关仍存在的介质击穿问题,这里对其结构加以改进,将扭转臂杠杆与打孔电容膜相结合,在减小驱动电压和提高开关速度的同时,又不影响电容比,一定程度上抑制了电击穿。其工作原理是:push电极加电压时杠杆上抬,介质膜与接触膜间距离增大导致其耦合电容很小,信号通过传输线;pull电极加电压时杠杆下拉,耦合电容变大,微波信号被反射。材料选择上仍以Au和S3N4为主,某些部分可用A1代替Au。结构与尺寸的设计上由超越方程与开关通断下的电容方程得到估计值,下极板为25×25(单位制采用μMKSV,长度单位为μm,下同),其上附有绝缘介质层,孔为3.4×3.4,杠杆为 100x30,结构层为20×20,极板厚度为1。用ANSYS仿真得到图3所示结果。

  用ANSYS仿真

  在ANSYS做静电耦合与模态分析后利用ANSOFT HFSS对该开关进行3D电磁场仿真,进一步求得其插入损耗与隔离度,确定共面波导和接触膜的结构,从而完善开关的射频性能。建模时忽略开关的弯曲,定义材料特性与空气辐射边界,利用wave port端口进行仿真,分别求解开态的插入损耗和关态的隔离度。介质层较薄时,开关在10 GHz附近具有良好的隔离度,且插入损耗在1 dB以下。

  3 RF MEMS开关的制备工艺

  合理选择生长介质膜的工艺对开关性能有很大影响,本文的RF MEMS开关需要在基底表面生长一层氮化硅膜,一般选择LP-CVD工艺,而介质膜则选择PECVD工艺为宜,金属膜的性能要求相对较低,用溅射方法即可。考虑到基底要求漏电流与损耗尽可能小,选取高阻硅与二氧化硅做基底,后者保证了绝缘要求。金质信号线与下极板通过正胶剥离形成,电子束蒸发得到铝质上极板。但从可行性考虑,部分方案的工艺实现对于国内的加工工艺尚有难度,只能牺牲微系统的性能来达到加工条件。

  4 结语

  本文主要从结构上进行了创新,通过计算机辅助设计仿真分析得到了理论解,一定程度上满足了设计初衷,但在工艺上还不成熟。更低的驱动电压和更高的开关频率仍是亟待解决的问题,另外如何保证实际产品的可靠性、实用性也是未来的研究重点。

关键字:低压驱动  RF  MEMS  开关设计  模拟 编辑:神话 引用地址:低压驱动的RF MEMS开关设计与模拟

上一篇:解读MEMS镜头:未来手机的标准配置
下一篇:MEMS芯片大厂要革电子产业世界的命(一)

推荐阅读最新更新时间:2023-10-12 20:52

泰克RSA6100A 实时频谱分析仪荣获2007 DesignVision奖
RSA6100A独特的技术及满足客户需求的能力赢得IEC技术委员会一致认可 俄勒冈州毕佛顿, 2007年2月1日讯 – 全球领先的测试、测量和监测仪器供应商泰克公司(NYSE: TEK)日前宣布,RSA6100A系列实时频谱分析仪荣获由国际工程协会(IEC)颁发的测试测量设备DesignVision 2007奖。此次获奖的泰克实时频谱分析仪(RTSA)是世界上唯一专门为解决数字RF问题而设计的分析仪。 国际工程协会在DesignCon大会上公布了2007 DesignVision奖获奖者名单。这一奖项旨在表彰那些被公认为业界最独特且为行业带来巨大利益的技术、应用、产品和服务。该奖项的最后入围产品由DesignCon
[焦点新闻]
典型反激式开关稳压电源的设计方案
摘要:介绍了一种基于开关电源芯片FSDM0565R 的三相输入、多输出反激式开关稳压电源。分析了FSDM0565R 的特性和工作原理,并给出了它的设计电路图、实际参数的计算及器件的选取,最后给出了该电源模块的实测波形及测试技术指标。实验结果表明,利用该芯片设计的开关电源具有效率高、体积小、电路简单、输入电压变化范围宽、纹波小等特点。同时解决了工业现场三相输入的问题,具有实际的推广价值。   0.引言   由于线性电源发热量大,效率低(仅35%左右),体积大等缺点。开关电源自20 世纪以来便显出了强大的生命力, 倍受学者和用户的青睐。目前,开关电源以其高性能,高效率(75%,现在单片集成开关电源效率早已达到90%以上),这对解决能源
[电源管理]
典型反激式<font color='red'>开关</font>稳压电源的<font color='red'>设计</font>方案
STM32L4 物联网探索套件的高连接性
意法半导体 (ST)新推出高连接性的STM32L4 物联网探索套件(B-L475E-IOT01A),为开发人员开发物联网节点带来业内最高的灵活性,支持诸多低功耗无线通信标准和Wi-Fi®网络连接,同时还集成市场上同类产品所没有的运动传感器、手势控制传感器和环境传感器。下面就随嵌入式小编一起来了解一下相关内容吧。 旨在帮助将物联网硬件立即连接到云服务,同时保证高能效和高成本效益, 意法半导体 新物联网开发套件在同一块电路板上集成高性能且超低功耗的STM32L4微控制器与Bluetooth®low energy (BLE)、sub-GHz RF和Wi-Fi无线通信模块,及一个带印刷天线的动态NFC标签IC。 借助 意法半导体 强大的
[嵌入式]
采用模拟开关的载波抑制调幅电路
电路的功能 采用环形调制电路可进行载波抑制调制,这是高频电路中用得较多。在低频电路中,由于变压器较大,通常采用单片IC乘法器。本电路通过开关转换可具有同样功能,其特点是不受频率下限的制约。 电路工作原理 用模拟开关和差动放大器完成调制工作。由载波控制开关,开关的打接点在上时,从反相输入端输入,调制波被反相。下一个载波时返回正相输入,这样反复进行下去,来达到限幅调制,不会因载波周期而断续,只是使极性反转。 模拟开关必须跟上载波频率,所以在高频时不能使用。调制输出是方波,含有高次频率,根据需要可增加带通波滤器,以获得正弦波信号。
[模拟电子]
采用<font color='red'>模拟</font><font color='red'>开关</font>的载波抑制调幅电路
用c语言实现24LC256读写(非软件模拟方式)
#include unsigned char i=0; unsigned char receive=0x00; void i2c_start() { SEN=1; //启动 do{ }while(SSPIF==0); SSPIF=0; } void i2c_stop() { PEN=1; //产生停止条件 do{ ; }while(SSPIF==0); SSPIF=0; } void i2c_restart() { RSEN=1; //启动,反复启动 do{ ; }while(SSPIF==0); SSPIF=0; } void i2c_dataout()
[单片机]
采用低电压差分信号数据总线的模拟/数字转换器
在模拟/数字转换中,最理想的是能够利用最少导线便可将数字数据进行下传。有时可以采用输出串行数据的模拟/数字转换器,这当然是解决这个问题的一个办法。但这个解决方案本身存在问题需要解决。可以输出串行数据的模拟/数字转换器往往受制于传统串行总线的内部结构,以至传输速度受到一定的限制。由于这类串行总线经常进行单端信号传输,因此很易产生电磁干扰,影响邻近电路的稳定性。邻近电路产生的共模噪音也会影响串行总线的稳定性,令数据传输出现误码。   克服这些问题的其中一个办法是采用低电压差分信号 (LVDS) 数据总线。图 1 是其中一种模拟/数字转换器的结构框图,带有LVDS 输出信号,驱动专用集成电路或解串器。 图 1:结构框图
[模拟电子]
台积电赢得苹果所有5G射频芯片订单 最快有望应用于iPhone 14
北京时间2月22日早间消息,据报道,台积电赢得苹果所有5G射频芯片订单,最快有望应用于今年推出的新一代iPhone 14。    对于相关传闻,台积电不予评论。    市场人士分析,相关晶片将采用台积电6nm制程生产,预期年需求将超过15万片。业界认为,RF相关网通晶片升级至6nm制程投片将是趋势,由于台积电先进制程产能最大且生产品质与良率稳定,苹果仍是台积先进制程最大规模买家。 图源 / 中国台湾《经济日报》 台积电6nm制程隶属于7nm家族,也是当年在台积电营收占比最大的先进制程,整体应用范围已横跨高阶至中阶行动产品、消费性应用、人工智慧、网通、5G基础架构、绘图处理器、以及高效能运算,其中6nmRF制程(N6RF)是
[手机便携]
台积电赢得苹果所有5G<font color='red'>射频</font>芯片订单 最快有望应用于iPhone 14
燃料开关测试系统的设计与实现
0 引 言 众所周知能源危机和大气污染是未来汽车燃料所要解决的最关键问题。为降低排放,缓解石油能源紧张的局面,气体燃料受到了世界各国的重视和推广。大量实车试验均证实以天然气(CNG)或液化石油气(LPG)为燃料,发动机的NOx,总碳氢THC,CO及CO2的排放较汽油的排放污染明显减少,且大大节省了能源。 双燃料汽车技术的关键之一是油和气转换控制,燃料开关正是用于以自动或手动的方式实现燃料间的切换,其品质也关系到汽车的整体性能。本文所针对的燃料开关具有以下的主要功能:燃料切换、燃料容量显示、蜂鸣器报警以及指示灯亮度关于环境光照度自动调节等。为确保燃料开关的质量控制满足最苛刻的欧洲汽车零部件质量标准,燃料开关必须百分之百进行测试
[测试测量]
燃料<font color='red'>开关</font>测试系统的<font color='red'>设计</font>与实现
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved