电容式触摸传感器设计技巧

最新更新时间:2013-11-28来源: 互联网关键字:电容式  触摸  传感器 手机看文章 扫描二维码
随时随地手机看文章
电容式触摸传感器设计技巧

触摸传感器已经被广泛使用很多年了。但近期混合信号可编程器件的发展,让电容式触摸传感器已成为各种消费电子产品中机械式开关的一种实用、增值型替代方案。

典型的电容式传感器覆盖层的厚度为3mm或更薄。随着覆盖层厚度的增加,手指触摸的传感将变得越来越困难。换句话说,伴随着覆盖层厚度的增加,系统调整过程将必须从科学向艺术发展。为了说明如何制作一个能够提升目前技术极限的电容式传感器,本文所述的实例中选用玻璃覆盖层的厚度为10mm。玻璃使用简单,随处可见,而且是透明的,所以你可以看到下面的感应垫。玻璃覆盖层还可直接应用于白色家电。

手指电容

任何电容式触摸传感系统的核心都是一组与电场相互作用的导体。人体皮肤下面的组织中充满了传导电解质---这是一种有损电介质。正是手指的这种导电特性使得电容式触摸传感成为可能。

简单的平行板电容器有两个导体,这两个导体之间隔着一层电介质。该系统中的大部分能量直接聚集在电容器极板之间。少许能量会泄露到电容器极板以外的空间,而由这些泄露能量所形成的电场叫做边缘场。制作实用电容式传感器的部分难题在于需要设计一套印刷电路板轨线,来将边缘场引导到用户易接近的有效感应区域中。平行板电容器不是这种传感器模式的理想选择。

当把手指放在边缘电场的附近时,电容式传感系统的导电表面积会增加。由手指所产生的额外电荷存储容量,就是我们所知的手指电容CF。在本文中,无手指触摸时的传感器电容用CP来表示,意指寄生电容。

关于电容式传感器人们常有这样的误解:为了使系统正常工作,手指必须接地。实际上,手指之所以被传感是因为它带有电荷,而与其是否悬空或接地完全无关。

传感器的PCB布局

图1显示了一块PCB的顶视图,该PCB应用了本设计案例中的一个电容式传感器按键。

图1:PCB顶视图。
图1:PCB顶视图。

这个按键的直径为10mm,相当于一个成人指尖的平均尺寸。为该演示电路而组装的PCB带有4个按键,其中心相隔20mm。如图1中所示,接地平面也位于顶层。金属感应垫和接地平面之间设置了一个均匀的隔离间隙。该间隙的尺寸是一个重要的设计参数。如果间隙设置得过小,则过多的电场能量将直接传递至地。而如果间隙设置得过大,则将无法控制能量穿越覆盖层的方式。将间隙尺寸选为0.5mm,可以很好地使边缘场透过10mm厚的玻璃覆盖层。

图2展示了同一种传感器模式的截面图。

图2:传感器的PCB和覆盖层截面图。
图2:传感器的PCB和覆盖层截面图。

如图所示,PCB上的一个过孔将金属感应垫与电路板底面上的印制导线相连。当电场试图找到最短的接地路径时,介电常数εr将影响进入材料中的电场能量的密度。标准玻璃窗的εr约为8,PCB的FR4材料的εr约为4,而白色家电中常用的耐热玻璃的εr大约为5。本设计案例中采用的是标准的窗玻璃。需要注意的是,在PCB上贴有玻璃纸,即3M公司的468-MP绝缘胶膜。

电容式传感系统101

该电容式传感系统的基本元件包括:一个可编程电流源、一个精密模拟比较器和一根用来按顺序传输一组电容式传感器信号的多路复用总线。在本文所讨论的系统中,一个弛张振荡器起着电容传感器的作用。该振荡器的简化电路示意图如图3所示。

图3:电容式传感弛张振荡器电路。
图3:电容式传感弛张振荡器电路。

比较器的输出被送进脉冲宽度调制器(PWM)的时钟输入电路,这个PWM对一个时钟频率为24MHz的16位计数器进行门控。传感器上面的手指使电容增大,进而导致计数值增加。手指的存在就是基于这一原理来检测到的。图4展示了该系统的典型波形。

图4:电容式传感弛张振荡器电路的波形。
图4:电容式传感弛张振荡器电路的波形。

该设备的实现原理图如图5所示。

图5:电容式传感电路原理图。
图5:电容式传感电路原理图。

为了实现电容式传感和串行通信,该电路采用了赛普拉斯的CY8C21x34系列中的PSoC IC芯片。该芯片包含一组模拟和数字功能块,这些功能块可由存储于板上闪存中的固件来配置。另一颗芯片负责处理RS232的电平移位,以便建立到主机的通信链接,并实现波特率为115,200的电容式传感数据记录。四个电容传感按键的引脚分配在图5的表中给出。PSoC是通过一个包含电源、地以及编程引脚SCL和SDA的ISSP接头来实现编程的。而通过一个DB9连接器将电脑与电容式传感电路板相连。

调整传感器

每次调用上列程序中的调用函数CSR_1_Start()时,均对Button1的电容进行测量。原始计数值被存储于CSR_1_iaSwResult[ ]阵列中。用户模块还跟踪一个用于原始计数的基线。每个按键的基线值均为一个由软件中的IIR滤波器进行周期性计算的平均原始计数值。IIR滤波器的更新速率是可编程的。基线使得系统能够适应于由于温度和其它环境影响而引起的系统中的漂移。开关差分阵列CSR_1_iaSwDiff[ ]包含消除了基线偏移的原始计数值。利用开关差值来决定按键目前的开/关状态。这可使系统的性能保持恒定,即便在基线有可能随着时间的推移而发生漂移的情况下也是如此。图6显示了固件中实现的差分计数与按键状态之间的转移函数。

图6:差分计数与按键状态之间的转移函数。
图6:差分计数与按键状态之间的转移函数。

该转移函数中的延滞带来了开关状态之间的快速转换,即使计数是有噪声的情况下也不例外。同时这还给按键带来了一种反跳功能。低门限被称为“噪声门限”,而高门限则被称为“手指门限”。门限水平的设定决定了系统的性能。当覆盖层非常厚时,信噪比很低。在此类系统中设定门限水平是一项具有挑战性的工作,而这恰好是电容式传感设计技巧的一部分。

图7展示了一个持续时间为3秒的按键触压操作的理想原始计数波形。

图7:将门限水平绘制在一个去除了基线的原始计数图上。
图7:将门限水平绘制在一个去除了基线的原始计数图上。

噪声门限被设定的计数值为10,而手指门限设定的计数值则为60。实际上,在实际计数数据中噪声分量是始终存在,图中没有显示是为了能清晰地显示门限水平。

部分调整过程还包括选择电流源DAC的电平以及设置用于计数累加的振荡器周期数。在固件中,函数CSR_1_SetDacCurrent(200, 0)把电流源设定在其低电流范围内,数值为200(最高255),大约对应于14μA。函数CSR_1_SetScanSpeed(255)把振荡器周期数设定为253(255-2)。原始计数和差分计数的分析表明:该系统的寄生引线电容CP约为15pF而手指电容CF约为0.5pF。可见,手指电容使总电容产生了约3%的变化。对于每个按键,每个原始计数值的采集所需要的时间仅为500μs。

关键字:电容式  触摸  传感器 编辑:神话 引用地址:电容式触摸传感器设计技巧

上一篇:用PAC-Designer 设计滤波器
下一篇:光电编码器的工作原理

推荐阅读最新更新时间:2023-10-12 20:54

Windows 8新触摸板曝光 五点触控64级压感
  早在去年11月,Synaptics公司宣布计划推出新的支持多点 触控 的笔记本电脑触摸板。当时,该公司利用Windows 8开发者预览版演示了新款触摸板与新界面Metro的互动方式。   今天,News.com和几家其他媒体获得了一次这款触摸板的上手机会,现在它有了一个新名字:ForcePad。与现在触摸板最大的区别在于,它没有实体按键——ForcePad只是一块薄薄的板子。ForcePad还能对压力进行感应,Synaptics称用户可以在它上面同时使用最多五只手指,并且将压力感应分为64个等级。   显然,这种电脑触摸板将会让不带触摸屏的笔记本电脑同样享受到Windows 8最新的“更加时尚的”用户界面带来的优势。F
[工业控制]
电涡流传感器的典型应用
  涡流传感器系统广泛应用于电力、石油、化工、冶金等行业和一些科研单位。对汽轮机、水轮机、鼓风机、压缩机、空分机、齿轮箱、大型冷却泵等大型旋转机械轴的径向振动、轴向位移、键相器、轴转速、胀差、偏心、以及转子动力学研究和零件尺寸检验等进行在线测量和保护。   轴向位移测量   对于许多旋转机械,包括蒸汽轮机、燃汽轮机、水轮机、离心式和轴流式压缩机、离心泵等,轴向位移是一个十分重要的信号,过大的轴向位移将会引起过大的机构损坏。轴向位移的测量,可以指示旋转部件与固定部件之间的轴向间隙或相对瞬时的位移变化,用以防止机器的破坏。轴向位移是指机器内部转子沿轴心方向,相对于止推轴承二者之间的间隙而言。有些机械故障,也可通过轴向位移的探测,
[测试测量]
电涡流<font color='red'>传感器</font>的典型应用
超声波避障传感器在AGV侧面防撞中的应用
随着市场物流行业发展,人力已无法支撑庞大的物流运输体系,导致出现数据不准确、管理人员无法及时处理缺货及爆仓等情况,大大降低了物流运输的运营效率,为了提高客户市场占有率及运输效率,并降低人工及整体运输成本,AGV因其可以帮助企业提高工作效率,替代人工,完成危险或者狭小空间作业,而且能够有效管理,一个维护人员可以代替10个搬运工,大大降低企业成本,提高回报率。被广泛应用于自动化物流系统中。 AGV车能够沿规定的导引路径行驶,具有安全保护以及各种移载功能的运输车,工业应用中不需驾驶员的搬运车,以可充电之蓄电池为其动力来源。一般可透过电脑来控制其行进路线以及行为,或利用电磁轨道来设立其行进路线,电磁轨道黏贴於地板上,无人搬运车则依循电磁
[机器人]
车用传感器的开发趋势及预测
全球传感器市场正呈现出快速增长态势。据悉,2008年全球传感器市场容量为506亿美元,预计2010年全球传感器市场可达600亿美元以上。东欧、亚太区和加拿大成为传感器市场增长最快的地区,而美国、德国、日本依然是传感器市场分布最大的国家。就世界范围而言,传感器市场上增长最快的依旧是汽车市场。 “没有传感器技术就没有现代汽车”已成为业内共识,这意味着 汽车电子 化越发达, 自动化 程度越高,对传感器依赖性就越大。对此,业内专家认为,未来新型汽车应用系统将催生新的汽车传感器与之配套。传感器发展的最大特点是不断引入新技术发展新功能,未来汽车传感器技术总发展趋势是微型化、多功能化和智能化。 世界车用传感器的开发趋势 资料显示,
[传感器]
无线水位检测系统与压力传感器补偿方法的研究
摘 要: 一种基于ATmega16和FC222-CH的无线水位检测系统。该系统由无线通信模块、电源模块、AD转换模块、上位机模块组成,实现了水位的无线检测、运行故障报警等功能,并配以自行设计的LabVIEW 8.5上位机显示界面,使整套开发系统兼备可视化与实时性的双重要求。   近年来,随着我国地质勘探水平的不断提高,水位检测、温度检测、金属含量检测等技术已日趋成熟。但是,当进行具体工程应用时,还需要考虑很多因素。本文根据地质勘探队在勘探矿井等自然环境恶劣、不适合机动车驶入以及工作人员长期驻留的情况,提出了无线远程检测方法。检测系统中的压力传感器多选用单晶硅压力传感器。因为此种传感器是利用单晶硅的压阻效应制成,其压阻系数随温
[工业控制]
无线水位检测系统与压力<font color='red'>传感器</font>补偿方法的研究
一种汽车倒车障碍检测系统解决方案
倒车障碍检测系统所采用的超声波传感器技术可以探测到附近的障碍物,为驾驶员提供倒车警告和辅助泊车功能,其原理是利用超声波探测倒车路径上或附近存在的任何障碍物,并及时发出警告。所设计的检测系统可以同时提供声光并茂的听觉和视觉警告,其警告表示是探测到了在盲区内障碍物的距离和方向。这样,在狭窄的地方不管是泊车还是开车,借助倒车障碍报警检测系统,驾驶员心理压力就会减少,并可以游刃有余地采取必要的动作。而这种PIC l8F8490微控制器与超声波传感器很便宜,并且可以用在众多车型上。   那末什么是基于超声波传感器的倒车障碍检测系统呢?为此应先了解超声波传感器的有关技术问题   超声波传感器系统构成与工作程式(见图1所
[汽车电子]
一种汽车倒车障碍检测系统解决方案
TE Connectivity推出紧凑型力传感器
自动化已成为我们的日常职能中越发重要的一部分。这种趋势不仅提高了传感器内容处理要求,而且还要求传感器可以提供更高的性能、更紧凑的尺寸和满足量产需求的最优化设计。 全球连接与传感领域领军企业TE Connectivity (TE)优化紧凑型力传感器设计以提高性能,力传感器最基本的特性是灵敏度、稳定性、可重复性和精度。此外,力传感器还应能够在正常使用和操作过程中承受高过载(包括意外跌落和其他不可预见的压力)而不会损坏,这是很重要的。除了仅以传感器精度、稳定性和可重复性为主要因素的计量应用外,设备制造商和消费级市场中的大多数应用都需要考虑力传感器功能的执行与生产成本的平衡以及扩展到批量生产阈值的能力。 TE Connect
[传感器]
TE Connectivity推出紧凑型力<font color='red'>传感器</font>
指纹识别传感器将进一步缩小 但速度更快
    近年来,随着消费者在智能手机储存越来越多的敏感数据,智能手机厂商也开始探寻新的方法来确保信息安全。苹果公司在 iPhone 5s 上搭载的指纹识别系统 Touch ID 就向我们展示了一种操作简单的安全识别方法。   从那以后,指纹识别这项生物技术就开始被人们广泛关注,一些搭载 Android 系统的高端旗舰机型也开始采用指纹识别传感器。而在接下来的两年时间里,我们看到了指纹识别功能在智能手机产品中的爆发,无论是高端机还是入门机都将指纹识别作为手机的卖点。   现如今,指纹识别功能已经成为许多智能手机产品的标准配置。为了确保指纹识别传感器的精准度和识别速度,其尺寸规格不能太小。而全球最大的光学跟踪(OTP)移动输
[安防电子]
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved