在电控系统中,模拟电路电源与逻辑电路电源分离,一是为了去除通过电源耦合逻辑电路产生的干扰进入模拟电路,二是为了避免传感器通过电源耦合对ECU干扰。各功能模块供电系统如图1所示,皆采用7812和7805三端稳压集成芯片,且都单独对电源进行负压差保护,这样不会因其中某一稳压电源出现故障而影响整个系统电路;使用低通滤波器亦可减少以高次谐波为主的干扰源,从而改善电源波形;在输出端采用了过压保护电路。通过上述设计可大大提高供电的可靠性。图中D1、D2用于负压差保护,防止压差击穿稳压器的be结使器件永久失效,稳压管WY1、晶闸管Q1用于过压保护,电容E1、E2、C1、C2使输出电压波纹限制在一定范围内。?
上一篇:5W的LED驱动电源原理图
下一篇:电源供给模块电路图
推荐阅读最新更新时间:2023-10-13 10:58
电子系统朝高方向发展 电源管理芯片是根基
电源管理芯片的应用范围十分广泛,发展电源管理芯片对于提高整机性能具有重要意义,对电源管理芯片的选择与系统的需求直接相关,而数字电源管理芯片的发展还需跨越成本难关。当今世界,人们的生活已是片刻也离不开电子设备。电源管理芯片在电子设备系统中担负起对电能的变换、分配、检测及其他电能管理的职责。电源管理芯片对电子系统而言是不可或缺的,其性能的优劣对整机的性能有着直接的影响。电源管理提高整机性能所有电子设备都有电源,但是不同的系统对电源的要求不同。为了发挥电子系统的最佳性能,需要选择最适合的电源管理方式。首先,电子设备的核心是半导体芯片。而为了提高电路的密度,芯片的特征尺寸始终朝着减小的趋势发展,从最初的几十微米发展到目前的0.5微米、
[电源管理]
在分布式电源系统中采用集成DC-DC转换器节省空间、缩短研发时间
引言 通过使用单个大功率、隔离型DC-DC模块将48V电压转换成一个中等 电源 ,如12V或更低电压,可以获得较好的系统性能。将这一中等电压再转换到系统负载所要求的具体电压。这样的电压转换可以通过非隔离、负载点 电源 实现,如图1右侧框图所示。对于第二级电源转换,集成开关稳压器是非常理想的选择,因为输入电压(≤ 12V)和输出电流( 10A)相对较低。 图1. 与电信单板上传统的分布电源架构(左边)相比,集成 开关调节器 (右边)具有更高效率和可靠性,能够加快设计进程、缩小电路板面积。 采用集成开关调节器的优势 电子行业的很多领域,包括电源电子行业,其共同目标是集成系统元件,以降低总体成本、
[电源管理]
信息技术设备的受限制电源
前言
作为符合安全标准IEC60950-1(2001版或2005版)的信息技术设备,在其内部和外侧,应通过采用适当的材料和元器件以及适当的结构来减小引燃危险和火焰蔓延,比如设计能够限制元器件温度或限制功率输出的电路来减小引燃危险;采用阻燃材料或足够的空间减小火焰蔓延,必要时使用防火防护外壳。标准中认为受限制电源内的元器件、由限制电源供电但未安装在V-1级材料上的二次电路上的元器件、由非受限制电源供电的二次电路上的元器件等部件具有着火危险,需要防火防护外壳;而由受限制电源供电的二次电路中的连接器和上的安装在V-1级材料上的元器件等,部件则不需要防火防护外壳。另外对于可以连接附加设备或附件(如扫描仪、鼠标、键盘、DVD驱动器等
[电源管理]
电源系统的后调节和整理电路
当涉及到系统安全性或高精度时, 从低端产品到高端产品的制造商,从小型装配商到大型供应商,任何人都不能忽视后调节或整理这一问题。 后调节(Post Regulation),即众所周知的CV/CC(恒压/恒流)充电,已经成为任何适配器或电池充电器不可缺少的功能。后调节可延长电池的使用寿命。 在AC/DC变换应用中,TSM101、102、103和104系列器件是不同的运算放大器、比较器和参考电压之间的组合。它们的工作电压最高可达36V;带宽可达1MHz;当电流消耗为1mA时,参考电压的精度可达0.4%。该系列器件采用8或16引脚封装。 如图1所示,元件型号标注出来,STMicroelectronics公司为大批量消费市
[电源管理]
高效率DC/DC恒流电源LED驱动创新设计方案
1 引言 半导体照明作为21 世纪的新型光源,具有节能、环保、寿命长、易维护等优点。用大功率高亮度发光二极管(LED)取代白炽灯、荧光灯等传统照明光源已是大势所趋。由于LED 自身特性,必须采用恒流源为其供电。因此,高效率恒流驱动电源的设计成为LED 应用中一个重要研究对象。LLC半桥谐振变换器以其高效率、高功率密度等优点成为现今倍受青睐的热门拓扑, 但一般用于恒压输出场合,传统LLC 被认为不适合应用于宽范围恒流输出。此处提出一种半桥LLC 新的设计方法,使其在宽范围恒流输出场合依然保持高效率。 因此,LLC 可作为LED 驱动的很好的拓扑选择。 2 恒流LLC 谐振变流器的设计方法 2.1 半桥LLC 变换
[电源管理]
开关电源中TL431的运行原理及典型应用
在早期的开关电源当中,组成取样的工作主要由三极管和二极管来完成。但是由于它们在参数上差别比较大,会为调试造成一定的阻碍。现如今,随着技术的进步,开关电源逐渐放弃了老旧的三极管和二极管,转而采用三端精密稳压源来进行取样和误差检测。而三端精密稳压源当中的经典,就非TL431莫属了。 在三端精密稳压器内部有温度补偿的高精度并联放大器,其内部基准电压精度非常高,所有产品的典型值均为2.495V,而其误差电压范围允许为2.44~2.55V,允许工作温度范围用尾缀字母表示,C为-10~85摄氏度,I为-40~85摄氏度,M为-55~125摄氏度。所以,无论是精度还是稳定度均非普通稳压二极管所能达到的。 在使用TL431进行设计时,我们要注意,
[电源管理]
M12266 Type-C输入3-6节锂电池同口充放电管理移动电源双向快充IC解决方案
引言 Type-C充电接口因其快速充电和高度的通用性,成为了电子设备未来最主流的充电接口。它的兼容性强、数据传输速度快、充电速度快、可逆插拔等特点,使其在未来的发展中具有很大的潜力。常见的便携式电子设备如吸尘器、电动工具、音箱等,未来将不再需要使用专用的适配器充电,一套Type-C口快充即可适配日常充电设备,这不仅会给我们的工作和生活带来巨大便利,也将大大减少电子垃圾,意义非凡。 由于常见的便携式电子设备都采用锂电池供电,而不同设备的电采用的锂电池串数不同。多节锂电池充放电管理一直是一个棘手的问题。Type-C要统一充电接口,为不同锂电池串数的电子设备进行充电,对充电芯片的要求是内置快充协议的同时,还需要实现对不同设备锂电
[电源管理]
最新电源管理文章
更多精选电路图
更多热门文章
更多每日新闻
更多往期活动
厂商技术中心
随便看看