推荐阅读最新更新时间:2023-10-13 10:58
无电解电容LED驱动方案中输出功率的测量
LED灯珠作为一个半导体器件,其寿命长达50,000小时以上。而LED照明驱动方案中普遍用到电解电容,其寿命则仅为5,000~10,000小时。这样电解电容的短寿命与LED灯珠的长寿命之间有一个巨大的差距,削弱了LED的优势。因而无电解电容LED驱动解决方案受到市场青睐。 美芯晟科技推出了基于MT7920的无电解电容LED驱动解决方案(见图1)。在该方案中,在全桥堆之后,采用容值较小的CBB高压陶瓷电容或薄膜电容取代了高压电解电容,去掉了电解电容,同时也提高了功率因子(PFC,在85VAC~265VAC范围可以全程高于0.9)。而输出电容C8和C9可以用陶瓷电容替代电解电容。从而实现了完全无电解电容。
图1、基于MT792
[测试测量]
基于PT6913非隔离高压LED驱动IC方案
驱动IC简介 PT6913芯片采用线性恒流控制输出电流,内部集成功率MOS,输出电流可通过外部电阻设定为10mA~60mA. PT6913最大输入电压可达400V,采用高端驱动方式,提供LED开路、LED短路保护。在任何情况下,输入电源高出LED负载的多余电压都由PT6913承受,LED负载不会面临过压威胁,这为整体方案提供了非常高的可靠性与稳定性。 为了防止IC过热损坏,PT6913集成温度补偿功能,当IC内部结温上升到130℃时,PT6913开始减小输出电流,当结温达到150℃时,输出电流将会减小至0.这可避免传统过温保护方式的闪烁问题。 工作原理 PT6913A/B采用线性恒流驱动技术,电路拓扑简单实用。LED负载,芯片与整
[电源管理]
手机设计中白光LED驱动器的EMI问题分析
目前手机普遍采用 白光LED 作为 显示屏 幕的背光 元件 ,相应的白光LED 驱动 器成为一颗在手机设计中不可或缺的 IC 。白光LED驱动器采用 开关电源 拓扑结构,如 电感 式升压转换器。转换器在高速 开关 的同时,由于使用电感产生 EMI 干扰,会给手机其他功能模块的设计带来困难。随着 LCD 屏幕的增大,驱动器所需的输出能力也相应增加,EMI干扰也会变得严重。因此设计白光LED驱动器时对EMI的考虑必需认真对待。
德州仪器 推出的TPS61161升压转换器除了提供10颗 LED 的驱动能力外,在EMI问题上也有相应的设计考虑,其典型应用如图1所示。在 TPS61161开关设计上采取两次
[电源管理]
自激反馈开关稳压电源电路图
自激反馈开关稳压电源基本原理如图所示。当加上输入电压时,电流经Rg流向开关管VTl的基极,使VTl导通,此时变压器副边的二极管反向偏置,无电流流过,于是VTl集电极电流和变压器绕组Np中流动的电流相等。由于是从零启动,因此基极电流不大就能使VTl导通。
[电源管理]
双输出单级PFC变换器的高亮LED驱动方案
1 引言
如今,LED 已经广泛应用于液晶背光、汽车、交通灯以及通用 照明 。根据IEC 61000-3-2 C 类法规,需要对大于25W 的LED 通用照明驱动器进行功率因数校正( Power Factor Correction,PFC) ,因此低成本的功率因数校正方案成为关注的研究课题。
AC /DC 变换器中常见的有源功率校正( Active PowerFactor Correction,APFC) 电路是两级PFC 电路,前一级电路用来进行功率因数校正,后一级电路用作DC /DC 变换器。由于存在两个级联功率级,这一类电路的尺寸和成本通常都比较高,因此,出现了另一类APFC 拓扑,这类拓扑把PFC
[电源管理]
拆修个4.7W的LED驱动电源(多图)
这个4.7W的 LED驱动电源 有几年的岁月了,设计不太合理--------电源热量大(容易炸机),输出电容容易怀孕,下面就动手拆修看看。
[电源管理]
基于TOP246Y的45W多路输出开关电源电路设计
本电路可作为机顶盒、电报译友器、大容量硬盘驱动器或笔记本电脑的开关电源。该电源在输入电压为交流185V~265V时,额定输出功率为45W,峰值输出率可达60W。电源效率N大于或等于75%,空载时的功耗仅为0.6W。五路输出分别为:UO1(5V、3.2A)、UO2(3.3V、0.03A)、UO4(18V、0.5A)、UO6(12V、0.6A);它们的负载调整率依次为正负5%、正负5%、正负8%、正负7%、正负7%。现将5V和3.3V作为主输出,并按一定的比例引入了反馈量,使这两路的稳压性能最佳。其余各路为辅输出。 考虑到开关电源周围的环境温度较高,TOP246Y适合温度不超过60度的标准机顶盒。
[电源管理]
低成本LED驱动IC促进了照明领域的革新
当今,商用LED的发光效率正接近荧光灯70~80lm/W的效率。荧光光源是非常成熟的技术,未来很可能会有一些改进,而LED的发光效率(lm/W)每10年就以20倍的速度增加,并且这种趋势还会继续。 LED照明光源已经开始渗透到像户外广告、建筑照明、交通信号以及汽车内部灯光、仪表盘、尾灯和前照灯等这样的照明市场。虽然还处于起步阶段,但根据最近的DOE报告,在2002年并网的LED照明设备将会节省8.3TW/h:“……超过一个大型发电站的输出功率。” 建筑照明节能的潜力是巨大的。在建筑中,照明是最终使用的第二大能源,占全美国所有电能的22%,估计每年将达到8.2×1015 BTU。 目前,相对过高的LED照明光源初始安装
[电源管理]