最基本的斩波电路如图形1所示,斩波器负载为R,当开关S合上时,uo=uR=Ud,并持续t1时间。当开关切断时uo=uR=0,并持续t2时间,T=t1+t2为斩波器的工作周期,斩波器的输出波形见图1(b)。若定义斩波器的占空比D=t1/T,则从波形图可以获得输出电压平均值为
(a)电路(b)波形
图1 直流变换器斩波电路
图1所示的直流变换器在使用时输出纹波较大,为降低输出纹波,在输出端接入电感L、电容C滤波电容,如图2(a)所示,图中V2为续流二极管。这就是降压(Buck)式变换器,其输出电压平均值Uo总是小于输入电压Ud。通过电感中的电流(iL)是否连续,取决于开关频率、滤波电感L和电容C的数值。
(a)电路(b)波形
图2 降压式(Buck)变换器
当电路工作频率较高,若电感和电容量足够大并为理想元件,电路进入稳态后,可以认为输出电压为常数。当晶体管V1导通时,电感中电流呈线性上升,因而
Ud-Uoa=L(iomax-iomin)/ton=L△ion/ton
式中ton是晶体管导通时间。
当晶体管截止时,电感中电流不能突变,电感上感应电动势使二极管导通,这时
Uoa=L(iomax-iomin)/toff=L△ioff/toff
式中toff为晶体管截止时间。在稳态时△ion=△ioff=△i。
因为电感滤波保持了直流分量,消除了谐波分量。输出电流平均值为
Ioa=(iomax+iomin)/2=Uoa/RL(3.4)
关键字:直流变换器 斩波电路
编辑:神话 引用地址:直流变换器斩波电路
推荐阅读最新更新时间:2023-10-13 11:01
直流变换器并联运行时的环流和振荡控制
摘要:开关电源并联系统产生的环流和振荡会对电子元件产生高电压冲击,降低功率因数,并且使并联的各个模块之间产生抑止。因此,对开关电源并联系统的技术研究得到了广泛的关注。分析了直流变换器并联系统产生环流和振荡的原因和过程,并通过实验结果得以验证。最后总结出几种有效解决并联系统环流和振荡问题的方法。 关键词:直流变换器;并联;环流;振荡 引言 多个开关电源模块并联是解决大功率供电系统的关键技术,它的优点是,可以灵活组合成各种功率等级的供电系统、提高了系统的可靠性、通过N+1冗余获得容错冗余功率、可以实现热更换、便于维修等。 原来应用于开关电源中的整流器二极管,由于效率较低,大部分已经被MOSFET代替。这样,在采用高效率MOSFET的同时
[电源管理]
超高效单相和三相单级交流-直流变换器拓扑结构
1 混合转换方法---新型Boost转换电路的拓扑结构
通过下面的例子可以很好的解释这种新型混合转换方法。图1(a)所示是一个改进的Cuk变换器,它增加了一个与输出电感Lr串联的整流管CR2。电感的下标r表示该电感的用途可以变换,从一个方波Cuk变换器的脉宽调制电感变换成混合转换Boost变换器的谐振电感。消去脉宽调制电感可以使Cuk变换器不降低电压,只留下递升的直流电压增长倍数,而不改变本身的极性变换。因此,新的直流电压倍数为:
(1)
于是,得到了一种新型变级Boost变换器。现在进一步分析这种变级Boost变换器的工作原理。首先,它包含有3个开关,即一个正向控制开关(MOSFET管)和两个整流管
[电源管理]
2kW新型推挽正激直流变换器的研制
引言
在低压大电流场合中,推挽电路以其结构简单、磁芯利用率高的优点而得到了广泛应用。但是,传统的推挽电路存在如下几个缺点:
1)由于原边漏感的存在,功率管关断时,漏源极产生较大的电压尖峰;
2)输入电流纹波的安秒积分大,因而输入滤波器的体积较大。
本文在传统推挽电路的基础上增加了一个箝位电容,便可以解决上述传统电路存在的两个缺点。 1 推挽正激电路工作原理
如图1所示,该变换器的两个主功率开关管V1及V2和两个匝数均为Np的初级绕组Tp1及Tp2交替连接成一个回路,在回路的两个中点之间连接一个箝位电容C。Cin为输入电容,Dv1及Dv2为两个主功率开关管寄生的反并二极管。D1及D2组成双半波整流电
[应用]