调制电路与解调电路详解(二)

最新更新时间:2014-06-28来源: 互联网关键字:调制电路  解调电路 手机看文章 扫描二维码
随时随地手机看文章
二、幅度检波电路

从调幅波中取出调制信号的过程,称为幅度检波,常用的检波电路有三种:小信号平方律检波,大信号包络全波和乘积检波,对检波器的要求有以下三点:
(1)检波效率(电压传输系数)
若检波器输入等幅高频电压峰值为Uc,检波后的输出电压为Uo,则检波效率K定义为:K=Uo/Uc
若检波器输入为包络调幅波,则检波效率寂静义为输出低频电压幅度UΩ与输入高频电压包络幅度 mUc之比:
K=UΩ/mUc
式中:m是调幅系数。K越大说明同样的输入情况下可以得到较大的低频输出信号,即检波效率高。
(2)检波失真
它反映输出低频电压波形和输入已调波包括形状的符合程度。
(3)输入电阻Ri
由检波器输入端看进去的等效电阻称为输入电阻Rio,通常检波器接于中频放大器的输出端,Ri看作是它的负载。因此,Ri越大对中频放大器的影响就会越小,
1、小信号平方律检波器

图5(a)是小信号检波电路。其特点是:(1)输入高频信号ui(t)的幅度为几十毫伏量级;(2)选择适当的偏置电压使工作点Q处于伏安特性的弯曲段上[见图5(b)],在整个高频信号周期内均有电流通过二极管。经理论分析得该检波器的输出电压u2与输入电压U\c成正比,平方律检波正是由此得名,其参数如下:
(1)检波效率K=UΩ/mUc=Ra2Uc/(1+a1R [考题输出电压反作用]
式中:R为检波器负载电阻,Uc为高频调幅波的载波幅度,a1、a2为与工作点电流有关的系数,在室温情况下其值近似为:
a1=38Io 及 a2=0.74×10\Io (Io的单位为安培)
若检波器的工作点电流选定为Io=20微安,R=4.7千欧, Uc=50毫伏则检波效率为:
K=Ra2Uc/(1+a1R)=(4.7×10\×0.47×10\×20×10\×50×10\)/(1+38×20×10\×4.7×10\)=0.76
(2)非线性失真,由于二次谐波与基波相距很近,不易清除干净,故常用二次谐波失真系数y来估计失真的大小。其值为:
y=m/4
由式可见,调幅系数m越大则y越大,失真越严重,一般情况下m≈30%,则y≈7.5%
(3)输入阻抗Ri,指数波频率为ωc的交流阻抗。从图5(a)中可见,对ωc而言,C看作短路,所以Ri等于二极管的交流电阻rd,在室温情况下其值为:
Ri=rd=26×10\/Io
若Io=20微安,则Ri=(26×10\)/20×10\ =1.3千欧
小信号检波的缺点是:输入阻抗低,非线性失真严重,

2、大信叼峰值包络检波
如图6(a)是大信号检波电路,由于输出电压交流部分与调制信号最大值成正比,故又称为直线性检波,其特点是:(1)输入电压幅度一般500毫伏以上;(2)没有偏置电压E,由于输出电压的反作用,实际上工作点处于u<0的区段[见图6(b)]。因此,大信号检波二极管,在载波一周期内,只有一段时间寻通,而另一段时间截止。大信号峰值二极管检波器的主要参数计算如下:
K=cosθ

\
图5

\
图6 

\

式中:θ为半导通角,它取决于rd/R值,两者关系为
rd/R=(tgθ-θ)/π
可根据rd/R值,通过表一直接查出K值
(2)输入阻抗Ri
Ri/R=(tgθ-θ)/(θ-sinθcosθ)
可见,输入阻抗Ri决定于θ角,即决定于rd/R值,因此,可以根据rd/R值,通过表一直接查出输入阻抗Rio
(3)检波失真
常有两类失真:一类对角切割失真,二是底边切割失真,
图7示出对角切割失真情况,产生该失真的原因是滤波时间常数RC选得过大,以致滤波电容的放电速率跟不上包络变化速率所造成的,要防止对角切割失真现象,时间常数RC应满足下式关系:RC<(\/m)×(TΩ/2π)式中:m为调幅系数,TΩ=2π/Ω,若m=0.3时,则得RC<0.5TΩ

\图 7

另一种切割失真是由于检波器的低频交流负载与直流负载电阻不同而引起的,通常检波被输出的低频电压经耦合电路[图7(a)中的R1C1]再送至低频放大器中去由于C1数值很大,(约为10微法)它的两端降有直流电压为载波幅度的平均值Uco若R1m式中:R为直流电阻,交流电阻R-=R//R1。不失真条件可写为m图8(b)是电视接收机的滤波电路,由于调制信号为高达6兆赫的图象信号,为防止对角切割失真,电容C1只选10皮法,但只靠它滤除载波还不够,还要接入LC2滤波器,二极管串接小电阻200欧使信号增大,补偿二极管内阻的减小,从而使传输系数相对稳事实上,检波线性也得到改善。

\

关键字:调制电路  解调电路 编辑:神话 引用地址:调制电路与解调电路详解(二)

上一篇:调制电路与解调电路详解(一)
下一篇:间歇振荡电路分析

推荐阅读最新更新时间:2023-10-12 21:03

如何看懂电路图(四):振荡和调制电路详解一
振荡电路的用途和振荡条件   不需要外加信号就能自动地把直流电能转换成具有一定振幅和一定频率的交流信号的电路就称为振荡电路或振荡器。这种现象也叫做自激振荡。或者说,能够产生交流信号的电路就叫做振荡电路。   一个振荡器必须包括三部分:放大器、正反馈电路和选频网络。放大器能对振荡器输入端所加的输入信号予以放大使输出信号保持恒定的数值。正反馈电路保证向振荡器输入端提供的反馈信号是相位相同的,只有这样才能使振荡维持下去。选频网络则只允许某个特定频率 f 0 能通过,使振荡器产生单一频率的输出。   振荡器能不能振荡起来并维持稳定的输出是由以下两个条件决定的;一个是反馈电压 u f 和输入电压 U i 要相等,这是振幅平
[模拟电子]
如何看懂<font color='red'>电路</font>图(四):振荡和<font color='red'>调制</font><font color='red'>电路</font>详解一
FSK解调电路
数字调频和调相信号的调制与解调 1. 数字信号调频与调相最常见的数字调频与调相信号是,二元数据信号的移频键控信号FSK,以及移相键控信号PSK。 2.数字调频信号的产生从原理上讲,方波调频与前面讲过的模拟信号调频没有什么本质的不同。这里着重介绍一些适用的实际电路。 FSK信号和PSK信号 解调器用PLL解调FSK信号有两种不同的方法。第一种是用一个PLL使其始终对输入信号的频率锁定或跟踪。第二种方法是用一个PLL对FSK信号中的一个频率锁定,而对另一个频率则是失锁的。
[模拟电子]
FSK<font color='red'>解调</font><font color='red'>电路</font>图
使用MC1374的电视调制电路
使用MC1374的电视调制器电路图
[模拟电子]
使用MC1374的电视<font color='red'>调制</font>器<font color='red'>电路</font>图
三电平逆变器主电路调制策略研究
三电平逆变器作为多电平逆变器的一种,在高压大功率场合获得了较为广泛的应用。研究和分析了三电平逆变器主 电路 的原理和调制策略,并在Matlab/Simulink下进行了仿真分析。 1 引言 三电平结构作为多电平逆变器拓扑结构之一,自日本长冈科技大学难波江章(A.Nabae) 等人于1980 年在IEEE 工业应用年会提出以来,这种拓扑结构在实际工业现场获得了广泛 的应用。三电平逆变 电器 与普通的二电平逆变器相比,在相同载波频率下,逆变器的 开关 频 率要低一些,输出波形的谐波分量会更少一些,这样不仅减少了谐波损耗与 开关 损耗,提高 了系统的效率,同时也减少了对周围环境的电磁干扰。 2 三电平逆变器原理分析
[模拟电子]
DC-DC电路多种调制方式的介绍及对比
直流与直流之间的变换主要指一种直流电流的电压值到另一种电压值的电能转换。 DC-DC 作为一种小型的电源开关模块,能够很大程度上简化设计周期,加速电源电路的设计效率。在DC-DC电源当中有三种最常见的电路调制方式,本篇文章就对这三种调制方式进行了介绍以及比较,并对这三种调制方式的优缺点进行了阐述。首先我们来看一下这三种调制方式的示意图。 1) PWM方式 PWM方式,可称之为定频调宽,即开关频率保持恒定,而通过改变在每一个周期内的驱动信号的占空比来达到调制的目的,这是最常用的一种调制方式。当输出电压发生变化时,通过环路的控制,便会使驱动信号的占空比发生改变,从而维持输出电压的恒定。 作为最常用的调制方式,PWM方式有以下优点:控
[电源管理]
DC-DC<font color='red'>电路</font>多种<font color='red'>调制</font>方式的介绍及对比
能用直流信号驱动LED的简单PWM调制电路
  利用可变占空比(脉宽调制或PWM)的方法,可实现LED驱动电路的调光。PWM方法可充分利用LED的功能,因为电流越大,特定功耗(温度)水平下的LED光输出就越大。因此,在LED两端施加PWM电流后,其输出的平均功耗与采用直流控制方法所产生的平均功耗相当,但工作电流更大,光输出更高。   即使可用的控制信号是直流信号,也可以用性能可预测且具良好线性的简单电路实施PWM控制。这个电路由一个双路比较器和一些外部元件组成,采用0~5V控制信号产生500Hz PWM信号,非线性度为2%,占空比可调范围为0~100%(图1)。      图1:这个电路将0~5V直流控制信号转换成PWM信号以驱动LED。   比较器的“B”端被配置为工作
[电源管理]
能用直流信号驱动LED的简单PWM<font color='red'>调制</font>器<font color='red'>电路</font>
调制电路解调电路详解(二)
二、幅度检波电路 从调幅波中取出调制信号的过程,称为幅度检波,常用的检波电路有三种:小信号平方律检波,大信号包络全波和乘积检波,对检波器的要求有以下三点: (1)检波效率(电压传输系数) 若检波器输入等幅高频电压峰值为Uc,检波后的输出电压为Uo,则检波效率K定义为:K=Uo/Uc 若检波器输入为包络调幅波,则检波效率寂静义为输出低频电压幅度UΩ与输入高频电压包络幅度 mUc之比: K=UΩ/mUc 式中:m是调幅系数。K越大说明同样的输入情况下可以得到较大的低频输出信号,即检波效率高。 (2)检波失真 它反映输出低频电压波形和输入已调波包括形状的符合程度。 (3)输入电阻Ri 由检波器输入端看进去的等效电阻
[模拟电子]
<font color='red'>调制</font><font color='red'>电路</font>与<font color='red'>解调</font><font color='red'>电路</font>详解(二)
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved