利用运算放大器式电路虚地点减小电缆电容原理图

最新更新时间:2014-08-09来源: 互联网关键字:运算放大器  电容原理图 手机看文章 扫描二维码
随时随地手机看文章

利用运算放大器的虚地来减小引线电缆寄生电容CP的原理图

采用运算放大器法  
   下图是利用运算放大器的虚地来减小引线电缆寄生电容CP的原理图。图中电容传感器的一个电极经电缆芯线接运算放大器的虚地Σ点,电缆的屏蔽层接仪器地,这时与传感器电容相并联的为等效电缆电容Cp/(1+A),因而大大地减小了电缆电容的影响。外界干扰因屏蔽层接仪器地,对芯线不起作用。
传感器的另一电极接大地,用来防止外电场的干扰。若采用双屏蔽层电缆,其外屏蔽层接大地,干扰影响就更小。实际上,这是一种不完全的电缆“驱动技术”,结构较简单。开环放大倍数A越大,精度越高。选择足够大的A值可保证所需的测量精度。

图5.3-12 利用运算放大器式电路虚地点减小电缆电容原理图

关键字:运算放大器  电容原理图 编辑:神话 引用地址:利用运算放大器式电路虚地点减小电缆电容原理图

上一篇:变压器电桥原理图
下一篇:差动脉宽(脉冲宽度)调制电路

推荐阅读最新更新时间:2023-10-12 21:03

运算放大器的特性
设在 a,b 间加一电压 ud =u+-u-,则可得输出uo和输入ud之间的转移特性曲线如下: 分三个区域: ①线性工作区:-ε |ud| ε, 则 uo=Aud ②正向饱和区:ud ε, 则 uo= Usat ③反向饱和区:ud - ε , 则 uo= -Usat
[模拟电子]
<font color='red'>运算放大器</font>的特性
利用数字变阻器和运算放大器构建可变增益反相放大器
         功能指标   利用数字变阻器AD5270/AD5272和运算放大器AD8615构建紧凑型、低成本、5 V、可变增益反相放大器    电路说明   图1所示电路采用数字变阻器 AD5270/AD5272 和运算放大器AD8615 ,提供一种紧凑型、低成本、低电压、可变增益反相放大器。AD5270/AD5272(10引脚3 mm × 3mm × 0.8 mm LFCSP)和AD8615(5引脚TSOT-23)封装尺寸小、成本低,为模拟信号处理电路提供了业界领先的解决方案。   该电路提供1024种不同增益,可通过SPI(AD5270)或I2C(AD5272)兼容型串行数字接口控制。AD5270/
[电源管理]
利用数字变阻器和<font color='red'>运算放大器</font>构建可变增益反相放大器
集成运算放大器的单电源供电电路原理
集成运算放大器的单电源供电电路原理   采用单电源对集成这算放大器供电的常用方法是,把集成运算放大器两输入端电位抬高(且通常抬高至电源电压的一半,即 E+/2),抬高后的这个电位就相当于双电源供电时的“地”电位,因此在静态工作时,输出端的电位也将等于两输入端的静态电位,即E+/2。   大多数集成运算放大器电略部采用正、负对称的双电源供电,在只有一组电源的情况下,集成运算放大器也能正常工作。图1所示为两种采用单电源供电的供电电路。   图中,集成运算放大器两输入端抬高的电压由R4、R5对电源分压后产生,约等于 E+/2;C2为滤波电容;C1和C3分别为输入、输出隔直电容。为了减小输入失调电流的影响,图1(a)
[模拟电子]
集成<font color='red'>运算放大器</font>的单电源供电电路原理
使用追踪电源来提高信号链性能
本文阐述了直流偏置电源对敏感模拟应用中所使用运算放大器 (op amp) 产生的影响,此外还涉及了电源排序及直流电源对输入失调电压的影响。另外,本文还介绍了一种通过线性稳压器(一般不具有追踪能力)轻松实施追踪分离电源的方法,以帮助最小化直流偏置电源带来的一些不利影响。 在许多运算放大器电路中,直流偏置电源会影响运算放大器的性能,特别是在与高位计数模数转换器 (ADC) 一起使用或者用于敏感传感器电路的信号调节时。直流偏置电源电压决定放大器的输入共模电压以及许多其他规范。 在上电期间,必须协调直流偏置电源的顺序来防止运算放大器锁闭。这样会毁坏、损坏或者阻止运算放大器正常运行。本文解释了追踪电源对运算放大器的重要性,并介绍了一种利用
[电源管理]
使用追踪电源来提高信号链性能
采用运算放大器的积分器电路分析
通过将电阻器用作增益调整设置元件,建立起了在 DC 情况下运算放大器 (op amp) 的传输函数。在一般情况下,这些元件均为阻抗,而阻抗中可能会包含一些电抗元件。下面来看一下图 1 所示的这种一般情况。   图 1 运算放大器反馈的一般情况使用这些项重写本系列第一篇文章所得的结果后,传输函数为:增益 = V(out)/V(in)= - Zf/Zi在图 2 所示电路的稳定状态下,该结果减小至:V(out) = -V(in)/2πfRiCf其适用于稳定状态下正弦波信号。 图 2 配置为积分器的运算放大器正如最初所做的分析那样,流入求和节点的电流必须等于流出该节点的电流。换句话说,流经 Ri 的电流必须等于流经
[电源管理]
采用<font color='red'>运算放大器</font>的积分器电路分析
Intersil 推出40V JFET输入运算放大器
Intersil公司(纳斯达克全球精选市场交易代码:ISIL),今天宣布推出其新JFET输入运算放大器产品家族的第一个成员 --- ISL28210,进一步扩大了其针对工业、医学和传感器市场的精密产品家族。 ISL28210结合了诸多业内领先的功能,使之成为用于过程控制模拟输入/输出、气体或液体流量传感器、用于医用仪器的生物计量学高阻抗缓冲器的卓越设计选择。它还非常适合用于要求高电压信号调理的工业应用,如数据采集、ATE和配电系统。 新的ISL28210是一个工业温度级40V精密JFET输入运算放大器,集低噪声、低偏置电流、高压摆率、快速建立时间及低偏置电压等业内最佳特点于一身。 IS
[模拟电子]
低压运算放大器通过自举以实现高压信号和电源工作的应用
问题: 能否让低压放大器自举来获得高压缓冲器? 回答: 您可以采用具有出色输入特性的运算放大器,并进一步提高其性能,使其电压范围、增益精度、压摆率和失真性能均优于原来的运算放大器。 我曾设计过一个精密电压表的输入,需要一个亚皮安输入单位增益放大器/缓冲器,其低频噪声小于1μV p-p,失调电压低至大约100μV,非线性误差小于1 ppm。它还需要在音频和60 Hz频率下具有非常低的交流失真,以便利用不断增强的ADC分辨率。这足够雄心勃勃,但它同时需要使用±50 V电源缓冲±40 V信号。缓冲器输入连接到高阻抗分压器,或直接连接到外部信号。因此,它还必须能够承受静电放电和过压输入的冲击。 可用的亚皮安偏置电流运算
[模拟电子]
低压<font color='red'>运算放大器</font>通过自举以实现高压信号和电源工作的应用
一个对温度不敏感的高增益运算放大器设计
   0 引言   运算放大器 的用途非常广泛,是许多模拟系统和混合信号系统中的一个完整部分,大量具有不同复杂程度的运算放大器被用来实现各种功能,从直流偏置到高速放大或者滤波等。在很多功率电路中,对运算放大器的温度特性要求很高。例如,应用于功率放大器控制电路中的运算放大器,由于功率放大器是大功率器件,自身消耗的功率大,将导致功率放大器芯片的温度变化很大。因此要求控制电路中运算放大器的增益、稳定性等受温度影响要小。    1 运算放大器的结构选择   运算放大器有很多种结构,按照不同的标准有不同的分类。从电路结构来看,有套筒式共源共栅、折叠式共源共栅、增益提高式和一般的两级运算放大器等。   图1给出3种运算
[模拟电子]
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved