直接数字频率合成知识点汇总(原理_组成_优缺点_实现)

最新更新时间:2018-04-29来源: 姚小熊27关键字:直接数字频率合  DDS 手机看文章 扫描二维码
随时随地手机看文章

    DDS同DSP(数字信号处理)一样,也是一项关键的数字化技术。DDS是直接数字式频率合成器(Direct Digital Synthesizer)的英文缩写。DDS是从相位概念出发直接合成所需要波形的一种新的频率合成技术。


  直接数字频率合成是一种新的频率合成技术和信号产生的方法,具有超高速的频率转换时间、极高的频率分辨率分辨率和较低的相位噪声,在频率改变与调频时,DDS能够保持相位的连续,因此很容易实现频率、相位和幅度调制。此外,DDS技术大部分是基于数字电路技术的,具有可编程控制的突出优点。因此,这种信号产生技术得到了越来越广泛的应用,很多厂家已经生产出了DDS专用芯片,这种器件成为当今电子系统及设各中频率源的首选器件。


    直接数字频率合成原理

  工作过程为:


  1、将存于数表中的数字波形,经数模转换器D/A,形成模拟量波形。


  2、两种方法可以改变输出信号的频率:


  (1)改变查表寻址的时钟CLOCK的频率,可以改变输出波形的频率。


  (2)、改变寻址的步长来改变输出信号的频率.DDS即采用此法。步长即为对数字波形查表的相位增量。由累加器对相位增量进行累加,累加器的值作为查表地址。


  3、D/A输出的阶梯形波形,经低通(带通)滤波,成为质量符合需要的模拟波形。


    直接数字频率合成系统的构成


  直接数字频率合成主要由标准参考频率源、相位累加器、波形存储器、数/模转换器、低通平滑滤波器等构成。其中,参考频率源一般是一个高稳定度的晶体振荡器,其输出信号用于DDS中各部件同步工作。DDS的实质是对相位进行可控等间隔的采样。


    直接数字频率合成优缺点


    优点:


  (1)输出频率相对带宽较宽


  输出频率带宽为50%fs(理论值)。但考虑到低通滤波器的特性和设计难度以及对输出信号杂散的 抑制,实际的输出频率带宽仍能达到40%fs。


  (2)频率转换时间短


  DDS是一个开环系统,无任何反馈环节,这种结构使得DDS的频率转换时间极短。事实上,在 DDS的频率控制字改变之后,需经过一个时钟周期之后按照新的相位增量累加,才能实现频率的转 换。因此,频率时间等于频率控制字的传输,也就是一个时钟周期的时间。时钟频率越高,转换时 间越短。DDS的频率转换时间可达纳秒数量级,比使用其它的频率合成方法都要短数个数量级。


  (3)频率分辨率极高


  若时钟fs的频率不变,DDS的频率分辨率就是则相位累加器的位数N决定。只要增加相位累加器的 位数N即可获得任意小的频率分辨率。目前,大多数DDS的分辨率在1Hz数量级,许多小于1mHz甚 至更小。


  (4)相位变化连续


  改变DDS输出频率,实际上改变的每一个时钟周期的相位增量,相位函数的曲线是连续的,只是在 改变频率的瞬间其频率发生了突变,因而保持了信号相位的连续性。


  (5)输出波形的灵活性


  只要在DDS内部加上相应控制如调频控制FM、调相控制PM和调幅控制AM,即可以方便灵活地实 现调频、调相和调幅功能,产生FSK、PSK、ASK和MSK等信号。另外,只要在DDS的波形存储器 存放不同波形数据,就可以实现各种波形输出,如三角波、锯齿波和矩形波甚至是任意的波形。当 DDS的波形存储器分别存放正弦和余弦函数表时,既可得到正交的两路输出。


  (6)其他优点


  由于DDS中几乎所有部件都属于数字电路,易于集成,功耗低、 体积小、重量轻、可靠性高,且易于程控,使用相当灵活,因此性价 比极高。


    缺点:


  DDS也有局限性,主要表现在:


  (1)输出频带范围有限


  由于DDS内部DAC和波形存储器(ROM)的工作速度限 制,使得DDS输出的最高频有限。目前市场上采用CMOS、 TTL、ECL工艺制作的DDS工习片,工作频率一般在几十 MHz至400MHz左右。采用GaAs工艺的DDS芯片工作频 率可达2GHz左右。


  (2)输出杂散大


  由于DDS采用全数字结构,不可避免地引入了杂散。其来 源主要有三个:相位累加器相位舍位误差造成的杂散;幅 度量化误差(由存储器有限字长引起)造成的杂散和DAC 非理想特性造成的杂散。


    直接数字式频率合成器基本技术实现方案


  (1)采用高性能的DDS单片电路解决方案


  随着DDS技术和VLSI的发展,DDS单片化在九十年代就已经完成。由于DDS芯片性能日渐完善,促成了许多DDS芯片生产厂家出现,它们推出了许多性能优越的DDS芯片,为电路设计者提供了多种选择。其中AD公司的DDS系列产品性价比较高,目前取得了极为广泛的应用。


  (2)自行设计基于可编程器件的解决方案


  由于可编程逻辑器件的规模大、速度快、可编程,以及有强大的EDA软件支持等特性,十分适合实现DDS系统的数字部分。在高可靠性的应用领域,如果设计合理得当,将不会存在类似MCU的复位不可靠等问题。而且由于它的高度集成,完全可以将整个系统下载到同一个芯片当中,实现所谓的片上系统,从而大大缩小产品的体积,提高了系统的可靠性。


  (3)基于FPGA的DDS系统合成方案


  通过FPGA控制DDS产生线性调频信号及跳频信号。基于FPGA的DDS系统技术可以产生多种调制方式以及多种组合方式,并且可以实现多个DDS芯片的功能,更加集成。


  事实上,除了这三种基础合成方案外,还可考虑这三种方案的优势组合,形成新的方案。


    直接数字频率合成系统实现


    1、DSP及DDS芯片介绍


  本次设计采用DSP控制DDS实现频率合成器。使用TI公司生产的DSP处理器TMS320VC5402和ADI公司生产的DDS芯片AD9835,下面分别对这两个芯片做简单介绍。


  数字信号处理器(DSP)是在模拟信号变换成数字信号以后进行高速实时处理的专用处理器,其处理速度比最快的通用CPU还快1O一50倍。在当今的数字化时代,DSP己成为通信、计算机、消费类电子产品等领域的基础器件,被称为信息社会革命的旗手。


  VC5402是TI公司1999年10月推出性价比较高的定点数字信号处理器,VC5402具有先进的改进型哈佛结构,操作速率可达100MIPS;多总线结构。VC5402的存储器的配置比较灵活,主要由模式寄存器PMST里的OVLY、DROM和MP/MC位进行配置。其中,OVLY和DROM上电复位均为0,而MP/MC决定配置DSP为微处理器/微机模式。上电后采样MP/MC引脚信号,保存在MP/MC位,可以在DSP运行中由软件配置该位。


  AD9835是AD公司生产的一款CMOS工艺完备的DDS芯片,5V供电。它的最高时钟频率可达50MHZ。AD9835主要由数控振荡器(NCO)和相位调制器、正弦查询表以及一个10位数模转换器(DAC)组成。其中数控振荡器和相位调制器部分包含两个32位的频率寄存器、一个32位的相位累加器和四个12位的相位寄存器。


    2、系统硬件实现


  系统硬件框图如图2所示:


  选用的FLASH存储器为AM29LV160D。由DSP芯片通过CPLD对FLASH进行逻辑控制。这样可以使系统的存储器配置更加灵活。由于外扩了FLASH,DSP要对FLASH进行正常读写的逻辑时序控制就由CPLD来实现,由于CPLD可在线编程,使得日后系统的逻辑的修改也非常方便,这比用传统的组合逻辑电路设计要灵活方便,只需要的是将DSP对FLASH读写时序分析清楚。在此采用的是Altera公司的EPM7064S来完成以上功能。


  电源芯片采用rI’I公司生产的TPS767D318,该芯片是双电源输出,每个电源输出都有单独的复位和输出使能控制。它采用TSSOP封装,固定两路电压输出,第一路输出1.8V,第二路输出电压为3.3V。该芯片同时还提供)两路复位信号,该系统中只使用了第二路复位信号,芯片的22引脚输出低电平复位信号,复位后需为高电平,上拉为3.3V。


  数字解调实验时采用的信号是已调模拟信号,模拟信号不能直接送人DSP中,要先由模数转换器(AD)转换为数字信号后,再送入DSP中进行数字解调和基带处理。模数转换器选用了AD公司的AD转换芯片AD7822。AD7822是20脚的8位模数转换芯片,最大采样率可以达到2MSPS。AI)7822以并行的方式和DSP相连。数模转换(DA)模块的功能就是完成数字信号的模拟化,在进行数字调制实验时通过DA模块把DSP输出的已调数字信号转换为模拟信号,可以为解调实验提供一个已调的模拟信号,也可以通过示波器观测调制信号波形。该模块选用了AD公司的芯片AD7303。

关键字:直接数字频率合  DDS 编辑:王磊 引用地址:直接数字频率合成知识点汇总(原理_组成_优缺点_实现)

上一篇:三个案例帮你彻底了解反馈电路中的相位补偿
下一篇:富士通最新低功耗蓝牙模块及解决方案

推荐阅读最新更新时间:2023-10-12 21:04

基于DDS芯片和集成锁相芯片构成的宽频合成器设计
摘 要:结合数字式频率合成器(DDs)和集成锁相环(PLL)各自的优点,研制并设计了以DDS芯片AD9954和集成锁相芯片ADF4113构成的高分辨率、低杂散、宽频段频率合成器,并对该频率合成器进行了分析和仿真,从仿真和测试结果看,该频率合成器达到了设计目标。该频率合成器的输出频率范围为594~999 MHz,频率步进为5 Hz,相位噪声为-91 dBc/   DDS的参考信号由晶振产生,其频率为fref。DDS输出的信号频率为fDDS,频率值由频率控制字(FTW)控制。锁相环(PLL)的参考信号由DDS的输出信号驱动。VCO的输出频率由PLL芯片的电荷泵(CP)输出,并通过低通滤波器(LPF)后控制。频率合成器的输出信
[电源管理]
基于<font color='red'>DDS</font>芯片和集成锁相芯片构成的宽频合成器设计
基于单片机的正交信号源滤波器的设计
1 引言 由于传统的多波形函数信号发生器需采用大量分离元件才能实现,且设计复杂,这里提出一种基于CPLD的多波形函数信号发生器。它采用CPLD作为函数信号发生器的处理器,以单片机和CPLD为核心,辅以必要的模拟和数字电路,构成的基于DDS(直接数字频率合成)技术、波形稳定、精度较高的多功能函数信号发生器。 2 系统设计 图1给出系统设计框图,该系统设计主要由CPLD电路、单片机电路、键盘输入液晶显示输出电路以及D/A转换电路和低通滤波器等电路组成。 2.1 频率合成器 该系统设计采用直接数字式频率合成DDS(Direct Digital Frequency Sy
[单片机]
基于单片机的正交信号源滤波器的设计
一种基于DDS技术的信号发生器研究与实现
研究了一种基于DDS芯片AD9850和单片机AT89S52的信号发生器系统,能够产生正弦波、三角波和方波三种波形。该系统频率、幅值均可数控调节,相比传统信号发生器的性能,具有频带宽、频率稳、波形良好、接口简单、编程方便、成本低、易小型化等优点。 1 DDS技术基本原理 DDS法实现正弦信号发生器的原理框图,如图l所示,主要由相位累加器、相位调制器、正弦ROM查找表、D/A转换器及低通滤波器构成,其中相位累加器是整个DDS的核心,完成相位累加运算。DDS技术是根据相位间隔对正弦信号进行取样,将所得波形数据存储在定制好的正弦ROM表格中。频率合成时,相位累加器在参考时钟的作用下对时钟脉冲进行计数,同时将累加器输出的累加相位与频率字
[嵌入式]
一种基于<font color='red'>DDS</font>技术的信号发生器研究与实现
基于数字频率合成DDS的正弦信号发生器设计
1 引言 直接数字频率合成DDS(Direct Digital Syndaesis)是实现数字化的一项关键技术,广泛应用于电信与电子仪器领域DDS通常是在CPLD或FPGA内设置逻辑电路实现的,但由于DDS输出受到D/A转换器的速率及D/A转换后I/V转换中运放的带宽增益和响应时间的限制,CPLD和FPGA内部实现方案在高频段信号幅值已不稳定。因此,这里介绍一种基于DDS器件AD9851的信号发生器设计方案。 2 AD9851简介 AD9851是ADI公司采用先进CMOS技术生产的具有高集成度的直接数字频率合成器。该器件频带宽、频率与相位均可控,内部频率累加器和相位累加器相互独立,32位调频字使得其在180 MHz的系统时钟下输出
[电源管理]
基于<font color='red'>数字</font><font color='red'>频率</font>合成<font color='red'>DDS</font>的正弦信号发生器设计
基于AD9850构成的DDS正弦波信号发生器设计与实现
  论文设计开发了基于AD9850构成的DDS正弦波信号发生器的硬件系统,其频率范围为0~30MHz,根据软件设计的总体构想并结合硬件电路,给出了总体以及子模块的流程图,并用C语言编制相应程序.系统调试和测试结果表明,所设计的系统能够产成正弦波形,信号的频率.相位.幅度的调节精度和抗干扰性等技术性能指标基本达到设计目标.   1.引言   随着数字大规模 集成电路 技术的发展,采用数字电路的直接数字频率合成技术(DDS)具有频率转换速度快.频率分辨率高.相位可控.频率稳定度高等优点.频率转换速度快.频率分辨率高的信号源在现代电子通讯.航空航天.自动控制等领域中是必不可少的,因此DDS信号源在上述领域获得广泛的应用.
[单片机]
基于AD9850构成的<font color='red'>DDS</font>正弦波信号发生器设计与实现
DDS芯片基础介绍
1 直接数字频率合成器(DDS)是如何工作的?    DDS 至少包括带相位调制器的数字控制振荡器(NCO)、将相位信息转换为幅度的模块,以及数模转换器(DAC)三个部分。在DAC之前可能还会有一个同相/正交(I/Q)调制器。   下面介绍DDS的工作原理。在模拟域的正弦波中,单个频率fa, 的相位角以下面的速度旋转一个固定角度:   ω=Δphase/Δt=2πfa,   相位角相对于时间的变化与正弦波频率呈线性关系,在每个正弦波周期结束时相位角为0。在数字域,上述方程式中的Δt为采样时钟频率fs的倒数,这表明对任何给定的采样:   fa=Δphase*fs /2π   DDS中的相位累加器生
[模拟电子]
<font color='red'>DDS</font>芯片基础介绍
DDS在正交调制技术中的应用
    摘要: 直接数字式频率合成技术(DDS)是一种先进的全数字频率合成技术,它具有多种数字式调制能力(如相位调制、频率调制、幅度调制以及I/Q正交调制等),在通信、导航、雷达、电子战等领域获得了广泛的应用。介绍DDS在卫星通信调制技术中的应用。     关键词: 直接数字式频率合成 调制器 正交调制 从理论上讲,所有的已调信号都可以分解为同相和正交两路,因此,用正交调制法可以实现几乎所有的调制方式。目前,正交调制技术已广泛应用于雷达、导航、仪器仪表、电子战等领域。同样在卫星通信调制技术中,I/Q正交调制也发挥着非常重要的作用。卫星正交调制器原理框图如图1所示,它主要由数字信号处理(DSP)电路、数据转换
[应用]
基于FPGA的DDS调频信号的研究与实现
1 引言   直接数字频率合成器(DDS)技术,具有频率切换速度快,很容易提高频率分辨率、对硬件要求低、可编程全数字化便于单片集成、有利于降低成本、提高可靠性并便于生产等优点。目前各大芯片制造厂商都相继推出采用先进CMOS工艺生产的高性能和多功能的DDS芯片,专用DDS芯片采用了特定工艺,内部数字信号抖动很小,输出信号的质量高。然而在某些场合,由于专用的DDS芯片的控制方式是固定的,故在工作方式、频率控制等方面与系统的要求差距很大,这时如果用高性能的FPGA器件设计符合自己需要的DDS电路就是一个很好的解决方法,它的可重配置性结构能方便的实现各种复杂的调制功能,具有很好的实用性和灵活性。 2DDS调频信号发生器框图设计
[嵌入式]
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved