研究了一种基于DDS芯片AD9850和单片机AT89S52的信号发生器系统,能够产生正弦波、三角波和方波三种波形。该系统频率、幅值均可数控调节,相比传统信号发生器的性能,具有频带宽、频率稳、波形良好、接口简单、编程方便、成本低、易小型化等优点。
1 DDS技术基本原理
DDS法实现正弦信号发生器的原理框图,如图l所示,主要由相位累加器、相位调制器、正弦ROM查找表、D/A转换器及低通滤波器构成,其中相位累加器是整个DDS的核心,完成相位累加运算。DDS技术是根据相位间隔对正弦信号进行取样,将所得波形数据存储在定制好的正弦ROM表格中。频率合成时,相位累加器在参考时钟的作用下对时钟脉冲进行计数,同时将累加器输出的累加相位与频率字输入预置的相位增量相加,以相加后的结果形成正弦查询表的地址;取出表中与该相位对应的单元中的波形数据值,由D/A转换器输出模拟信号,再经低通滤波器使波形平滑,得到符合要求的模拟信号。
相位累加器由一个N位字长的加法器和N位累加寄存器级联而成,加法器可对频率字输入的二进制码进行累加运算,累加寄存器是典型的反馈电路,产生的累加结果作为正弦ROM查找表的下一个取样地址值,把从波形表中取出的数据送到D/A转换器进行转换,最后经过滤波电路输出正弦信号。相位累加器的最大计数长度与正弦查询表中所存储的相位分隔点数相同,由于相位累加器的相位增量不同,将导致一周期内的取样点数不同,这样输出信号的频率也相应变化(实现变频)。如果设定累加器的初始相位,则可以对输出信号进行相位控制。由采样原理可知,如果使用两个相同的频率合成器,并使其参考时钟相同,同时设定相同的频率字输入、不同的初始相位,那么在原理上就具备了实现输出两路具有一定相位差的同频信号的可能性,有效地解决了在一般通信信道中存在的相位不同步问题,这也是DDS技术的显著优点。
只要对相位的量化值进行累加运算,就可得到正弦信号的当前相位值;而用于累加的相位增量量化值B△θ决定了信号的输出频率fout,并呈现简单的线性关系。直接数字频率合成技术就是根据上述原理而设计的数字控制频率合成器。
2 系统硬件电路设计
2.1 AD9850芯片介绍
AD9850是美国AD公司生产的高集成度DDS芯片,采用CMOS工艺,其功耗在3.3 V供电时仅为155 mW,扩展工业级温度范围为-40~80℃,采用28引脚的SSOP表面封装形式。该芯片组成原理,如图2所示,内层虚线内是一个完整的可编程DDS系统,外层虚线内包含了AD9850的主要组成部分。AD9850内含可编程DDS系统和高速比较器,能实现全数字编程控制的频率合成。
在125 MHz的系统时钟下,AD9850中32位的频率字输入可使输出信号的频率分辨率达到0.029 Hz,并具有5位的相位字输入,允许相位按增量180°,90°,45°,22.5°,11.25°或这些值的组合进行调整。芯片对输入的标准正弦波,进行直接数字合成。输入信号频率最高为fclk=125 MHz,可生成0~fclk/2范围内的任意频率的正弦波和方波。AD9850在接上时钟电路之后,就可以产生一个频率和幅值都可编程控制的模拟正弦波输出,此正弦波可直接用作信号发生器,或者经过内部的高速比较器转换为方波输出。
2.2 硬件电路设计
该信号发生系统是以单片机AT89S52为控制器,以DDS芯片AD9850为核心,通过单片机控制功能芯片来实现频率预置、控制字设置等产生相应的信号输出。AD9850实现信号发生器功能,微处理器控制D/A转换器,实现各种信号幅值的可调性。整个信号发生系统的硬件电路主要由单片机及外围控制电路、正弦信号发生器功能电路、积分电路、滤波电路和检测电路等5部分组成,系统框图,如图3所示。其中键盘采用4×4矩阵式,主要用以设置频率和幅值;波形采用LCDl602液晶显示;LPF低通滤波和积分电路都采用模拟集成芯片LM324实现。
3 系统软件设计
系统软件设计采用汇编语言与C语言相结合来编写程序,这样不但提高程序对电路硬件的可控制性,同时也增加了程序的可读和可移植性。软件模块包括主程序(AT89S52初始化、AD9850初始化、LCDl602初始化)、显示子程序、键盘输入子程序、信号发生与控制子程序4部分组成。信号发生器系统主程序流程,如图4所示。
4 实验研究与数据分析
根据系统设计的思想,进行硬件电路搭建、硬件调试、软件调试及样机联调。使用电子实验室提供的EEl64lC型函数信号发生器、YB217-3B型双路数字毫伏表、EZl DS2250型数字示波器等设备对研制好的信号发生器进行测试。正弦波频率和幅值实验结果如表1,表2所示,三角波频率和幅值实验结果,如表3,表4所示,方波频率和幅值实验结果,如表5,表6所示。
从实验结果可以看出,本信号发生器系统产生的正弦波、三角波和方波,其频率的相对误差均低于0.5%,其幅值的相对误差均低于5%,满足设计要求。
5 结束语
DDS技术的频率和幅度可控任意波形发生器系统,结果显示该信号发生器系统软硬件电路设计的正确性和可靠性,具有调频和调幅功能。关于信号发生器相位的控制,有待进一步研究。
关键字:DDS 信号发生器
引用地址:一种基于DDS技术的信号发生器研究与实现
1 DDS技术基本原理
DDS法实现正弦信号发生器的原理框图,如图l所示,主要由相位累加器、相位调制器、正弦ROM查找表、D/A转换器及低通滤波器构成,其中相位累加器是整个DDS的核心,完成相位累加运算。DDS技术是根据相位间隔对正弦信号进行取样,将所得波形数据存储在定制好的正弦ROM表格中。频率合成时,相位累加器在参考时钟的作用下对时钟脉冲进行计数,同时将累加器输出的累加相位与频率字输入预置的相位增量相加,以相加后的结果形成正弦查询表的地址;取出表中与该相位对应的单元中的波形数据值,由D/A转换器输出模拟信号,再经低通滤波器使波形平滑,得到符合要求的模拟信号。
相位累加器由一个N位字长的加法器和N位累加寄存器级联而成,加法器可对频率字输入的二进制码进行累加运算,累加寄存器是典型的反馈电路,产生的累加结果作为正弦ROM查找表的下一个取样地址值,把从波形表中取出的数据送到D/A转换器进行转换,最后经过滤波电路输出正弦信号。相位累加器的最大计数长度与正弦查询表中所存储的相位分隔点数相同,由于相位累加器的相位增量不同,将导致一周期内的取样点数不同,这样输出信号的频率也相应变化(实现变频)。如果设定累加器的初始相位,则可以对输出信号进行相位控制。由采样原理可知,如果使用两个相同的频率合成器,并使其参考时钟相同,同时设定相同的频率字输入、不同的初始相位,那么在原理上就具备了实现输出两路具有一定相位差的同频信号的可能性,有效地解决了在一般通信信道中存在的相位不同步问题,这也是DDS技术的显著优点。
只要对相位的量化值进行累加运算,就可得到正弦信号的当前相位值;而用于累加的相位增量量化值B△θ决定了信号的输出频率fout,并呈现简单的线性关系。直接数字频率合成技术就是根据上述原理而设计的数字控制频率合成器。
2 系统硬件电路设计
2.1 AD9850芯片介绍
AD9850是美国AD公司生产的高集成度DDS芯片,采用CMOS工艺,其功耗在3.3 V供电时仅为155 mW,扩展工业级温度范围为-40~80℃,采用28引脚的SSOP表面封装形式。该芯片组成原理,如图2所示,内层虚线内是一个完整的可编程DDS系统,外层虚线内包含了AD9850的主要组成部分。AD9850内含可编程DDS系统和高速比较器,能实现全数字编程控制的频率合成。
在125 MHz的系统时钟下,AD9850中32位的频率字输入可使输出信号的频率分辨率达到0.029 Hz,并具有5位的相位字输入,允许相位按增量180°,90°,45°,22.5°,11.25°或这些值的组合进行调整。芯片对输入的标准正弦波,进行直接数字合成。输入信号频率最高为fclk=125 MHz,可生成0~fclk/2范围内的任意频率的正弦波和方波。AD9850在接上时钟电路之后,就可以产生一个频率和幅值都可编程控制的模拟正弦波输出,此正弦波可直接用作信号发生器,或者经过内部的高速比较器转换为方波输出。
2.2 硬件电路设计
该信号发生系统是以单片机AT89S52为控制器,以DDS芯片AD9850为核心,通过单片机控制功能芯片来实现频率预置、控制字设置等产生相应的信号输出。AD9850实现信号发生器功能,微处理器控制D/A转换器,实现各种信号幅值的可调性。整个信号发生系统的硬件电路主要由单片机及外围控制电路、正弦信号发生器功能电路、积分电路、滤波电路和检测电路等5部分组成,系统框图,如图3所示。其中键盘采用4×4矩阵式,主要用以设置频率和幅值;波形采用LCDl602液晶显示;LPF低通滤波和积分电路都采用模拟集成芯片LM324实现。
3 系统软件设计
系统软件设计采用汇编语言与C语言相结合来编写程序,这样不但提高程序对电路硬件的可控制性,同时也增加了程序的可读和可移植性。软件模块包括主程序(AT89S52初始化、AD9850初始化、LCDl602初始化)、显示子程序、键盘输入子程序、信号发生与控制子程序4部分组成。信号发生器系统主程序流程,如图4所示。
4 实验研究与数据分析
根据系统设计的思想,进行硬件电路搭建、硬件调试、软件调试及样机联调。使用电子实验室提供的EEl64lC型函数信号发生器、YB217-3B型双路数字毫伏表、EZl DS2250型数字示波器等设备对研制好的信号发生器进行测试。正弦波频率和幅值实验结果如表1,表2所示,三角波频率和幅值实验结果,如表3,表4所示,方波频率和幅值实验结果,如表5,表6所示。
从实验结果可以看出,本信号发生器系统产生的正弦波、三角波和方波,其频率的相对误差均低于0.5%,其幅值的相对误差均低于5%,满足设计要求。
5 结束语
DDS技术的频率和幅度可控任意波形发生器系统,结果显示该信号发生器系统软硬件电路设计的正确性和可靠性,具有调频和调幅功能。关于信号发生器相位的控制,有待进一步研究。
上一篇:基于FPGA的多按键状态识别系统设计方案
下一篇:基于DSP芯片和CPLD的刹车控制系统设计
推荐阅读最新更新时间:2024-05-02 23:01
安捷伦N5183A信号发生器维修
一、仪器名称型号 安捷伦N5183A信号源 二、故障现象: 客户反馈仪器输出电平超差大 三、排查故障过程: 第一步:仪器开机验证客户描述故障现象,经验证仪器在4G以下输出电平超差大。 第二步:进行排查故障测试,出现以上故障现象首先怀疑仪器内部模块损坏。 第三步:拆机验证,经过一系列排查检测发现仪器低频板、控制板组件、模块等多处损坏,从而造成输出信号异常。 四、维修: 更换低频板,控制板等损坏组件,调整检测仪器故障修复。
[测试测量]
介绍音频分析仪测量问题
本内容介绍了7723 音频分析仪 测量问题,在测量时读数亮灭闪烁无法读取,仪器无法继续进行测量。 1. VP-8194D信号发生器接受VP-7723D音频分析仪的OSC(晶振)信号触发并输出AM/FM标准信号到分析仪; 2.播放汽车音视频,并经交换器输入到音频分析仪AC信号输入端; 3.使用 计算机 编程通过GPIB控制音频分析仪; 4. 在此自动化系统中,VP-7723D按计算机预先编好的程序依次改变测试条件,自动测量汽车音频各项指标(测试条件与测量指标可交叉); 5. 当测试条件为HPF:200Hz,LPF:20KHz,测量AC LEVEL,REL LVL时FREQUENCY/AMPL
[测试测量]
基于FPGA的DDS调频信号的研究与实现
1 引言 直接数字频率合成器(DDS)技术,具有频率切换速度快,很容易提高频率分辨率、对硬件要求低、可编程全数字化便于单片集成、有利于降低成本、提高可靠性并便于生产等优点。目前各大芯片制造厂商都相继推出采用先进CMOS工艺生产的高性能和多功能的DDS芯片,专用DDS芯片采用了特定工艺,内部数字信号抖动很小,输出信号的质量高。然而在某些场合,由于专用的DDS芯片的控制方式是固定的,故在工作方式、频率控制等方面与系统的要求差距很大,这时如果用高性能的FPGA器件设计符合自己需要的DDS电路就是一个很好的解决方法,它的可重配置性结构能方便的实现各种复杂的调制功能,具有很好的实用性和灵活性。 2DDS调频信号发生器框图设计
[嵌入式]
单片机产生频率和输出电压可调的矩形波信号发生器
#include reg51.h typedef unsigned char uchar; sbit signal=P3^0; uchar counter; void main(void) { TR0=0; //禁止T0 TMOD=0x11; //T0和T1均选择工作方式1,16位定时器 TH0=-1000/256; //定时时间为50ms TL0=-1000%256; signal=0; //开始时输出为低电平 counter=0; //初始化T1的中断次数为0 EA=1; //使能
[单片机]
信号发生器的使用方法、种类以及注意事项
信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。各种波形曲线均可以用三角函数方程式来表示。能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。下面安泰测试小编给大家介绍一下信号发生器的种类、使用方法及其注意事项。 信号发生器有许多不同的类型,它们有不同的用途和应用。主要的信号发生器类型有函数发生器、射频和微波信号发生器、任意波形发生器、数字码型发生器和频率发生器。这些信号发生器又可以分成两大类,通用信号发生器与专用信号发生器。下面让我们来看看它们的特点与区别在哪里。 信号发生器的种类 1、函数发生器 函数发生器(FunctionGenerator)是一个可以生成简单重
[测试测量]
信号发生器怎么使用
信号发生器是一种能提供各种频率、波形和输出电平电信号的设备。在测量各种电信系统或电信设备的振幅特性、频率特性、传输特性及其它电参数时,以及测量元器件的特性与参数时,用作测试的信号源或激励源。 1、信号发生器如何使用 选用与验电器相同电压等级的验电信号发生器。手持验电器工作部分(验电器头)将发生器的电极头接触被测验电器的电极头,按动“工作”开关,此时验电器发出声光信号表明验电器的性能完好,如无声光指示表明验电器有故障,应修理或更换后使用。检测近电报警安全帽时只须将高压信号发生器的电极头靠近报警器按动“工作”开关即可。 一、开启电源,开关指示灯显示。 二、选择合适的信号输出形式(方波或正弦波)。 三、选择所需信号的频率范围,按
[测试测量]
DDS在函数发生器应用中的优点
在电子行业的基础设施和制造等领域,函数发生器都是有效的通用仪器。它可以生成不同频率和幅度的大量信号,用来评估新电路的运行情况,代替时钟信号,对新产品进行制造测试,及用于许多其它用途。 自第一部正弦波发生器问世以来,函数发生器的设计已经发生了多次演进,在当前数字领域中,大多数新型函数发生器(如Agilent 33220A)正采用一种新技术,称为直接数字合成(DDS)。DDS在大部分操作中使用数字电路,从而提供了数字操作拥有的许多优势。由于信号只在合成的最后阶段转换到模拟域中,所以在多个方面降低了函数发生器的复杂度,提高了函数发生器的稳定性。 从本质上看,DDS是一个以恒定高频率运行的多位计数器。在溢出时,通过利用一个多位
[测试测量]
小广播
热门活动
换一批
更多
最新嵌入式文章
更多精选电路图
更多热门文章
更多每日新闻
更多往期活动
- 一大波MCU开发板正在靠近,速来——瑞萨电子设计大赛(2015)
- 共抗疫情,少出门多学习。领取下载积分,让学习资料到你碗里!
- 【直播已结束】一起深挖 TI 新发布的 Robotics SDK,看干货直播赢好礼!
- TE助力数据中心设计,缩短你与奥运的距离,猜猜它属于哪个“奥运场馆”赢大礼!
- 下资料赢京东卡|泰克公司的创新一代触摸屏示波器
- 多款TI Launch板免费测评试用,赶紧来看看吧!
- Follow me第2期来袭,与得捷电子一起解锁开源硬件 Adafruit ESP32-S3 TFT Feather!
- 有奖直播|安森美领先的成像技术助您推进视觉产品创新
- 有奖直播:ADI 惯性 MEMS 传感器的应用价值与选型
11月22日历史上的今天
厂商技术中心