精密差分输出仪表放大器解析

最新更新时间:2006-07-13来源: 电子工程专辑关键字:放大器  共模  增益 手机看文章 扫描二维码
随时随地手机看文章

  采用最先进技术的模数转换器(ADC)能够接受差分输入信号,从而允许将来自传感器的整个信号路径以差分信号的形式传送给ADC。这种方法提供了显著的性能优势,因为差分信号增加了动态范围,减小了交流声,并且消除了对地噪声。

  

  图1a和1b所示的是两种常见的差分输出仪表放大器电路。前者提供单位增益,后者提供了2倍增益。但是,与单端输出的仪表放大器相比,这两种电路都会受到增加噪声、失调误差、失调漂移、增益误差和增益漂移的影响。

  图1a,1b:设计差分输出仪表放大器的通用方法。上部电路保持增益,下部电路将增益加倍。

  In-amp=仪表放大器

  Output Voltage=输出电压

  op amp=运算放大器

  

  图2所示是一个没有上述缺陷的差分输出仪表放大器原理图。这种设计充分利用了这样的特性,仪表放大器的输出实际上是其输出引脚(Vo)与参考引脚(Vref)之间的差。这里的应用是在两个引脚之间加入了一个增益为-1的反相器。

  图2:设计差分输出仪表放大器新的改进方法。保持了增益,且不会在输出信号中增加失调、漂移或噪声。

  n-amp=仪表放大器
 
  Output Voltage=输出电压

  op amp=运算放大器

  输入电压是V时,输出电压(Vo–Vref)也应该等于V。参考引脚的电压与输出引脚的电压极性相反。为了满足(Vo-Vref)=V,输出必须为Vo=Vin/2,Vref=-Vin/2。通过向运算放大器的同相端输入端施加+2.5V信号来设置其共模输出电平。运放在节点B产生+2.5V电压。从而,如果对输入端施加+1V电压,那么节点A产生+3V电压,并且节点C则为+2V,因此,输出为+1/2V以上和+2.5V以下。(Vo-Vref)的误差仅是由仪表放大器引起的。由反相放大器和电阻器引起的误差诸如失调电压、噪声和增益误差对两个输出端的影响同相,因此它们仅对共模输出有贡献,会被ADC抑制掉。

  

  图3是一张性能波形图,上面的波形是一个2Vp-p 1kHz输入。下面是两个输出波形。输出共模电压为+2.5V。图4示出的是差分输出信号的谱密度性能图。

  图3:2Vp-p, 1kHz输出信号(上部)。1Vp-p 1kHz差分输出信号(下部)。输出共模电压为+2.5V。

  

  图4:差分输出信号谱分析。仪表放大器的输入信号为2Vp-p, 1kHz。

关键字:放大器  共模  增益 编辑:金海 引用地址:精密差分输出仪表放大器解析

上一篇:精密差分输出仪表放大器解析
下一篇:一种新型基于MEMS的GTI滤波器的设计

推荐阅读最新更新时间:2023-10-12 20:11

低失真、双通道、差分放大器提供快速、精确测量结果
—— AD8270和AD8273差分放大器提供3倍于同类产品的带宽和转换速 率以及低失真特性为工业、航空和音频应用提高了测量速度和精度 关于产品AD8270 和 AD8273 AD8270 和AD8273是高速、低失真和精密双通道差分放大器,适用于要求非常快速和精密测量而不牺牲信号保真度的应用,例如航空、工业过程控制和高性能音频设备。 AD8270具有10 MHz带宽, AD8273具有12 MHz带宽,其带宽是其它同类放大器的3倍。另外,AD8270具有30 V/μs转换速率几乎是目前最相近的差分放大器的3倍;AD8273具有25 V/μs转换速率,比其它同类放大器高出1.5倍。这种优异的交流(AC)性能是由于
[模拟电子]
低噪声放大器在手机GPS上的应用
  早在2001年911恐怖事件以后,美国基于安全的考虑,强制要求手机具有GPS定位功能,以确定该手机的实时位置。近年来,随着我国基础建设的迅猛发展,道路建设日新月异;人们工作生活节奏加快,GPS导航定位系统日显重要,需求增加。最近有消息称:诺基亚高调宣布为其智能手机推出了Ovi地图新版本,将包括高端的步行和驾驶导航。此举被视为对GPS手机导航产业以及GPS导航相关产业影响巨大的变革。随着手机性能的普遍提升,以及手机GPS接收机独特问题的解决,GPS功能已不再是高端手机独享的配置,正在向普通手机标配发展。    GPS功能简介   GPS全称为全球定位系统,由24颗卫星分布在6个不同高度的轨道上,按功能分有导航和定位两
[模拟电子]
用一只真空管获得450倍增益
某种直接变频式收音机要用一只五极真空管获得450倍的音频增益。五极真空管是高跨导的,跨导是指阳极电流的变化与控制栅极电压的变化之比值。但是,要获得高增益,就需要有高负载阻抗。采用五极真空管的RF应用通常会用一个LC调谐电路作为其阳极负载,即谐振时的阻抗,因此有高的增益。采用非调谐电路时,一般不可能得到高的负载阻抗,因为真空管有dc要求。 图1 一只6AU6五极真空管需要一个约5 mA的静态阳极电流。 例如,一只6AU6五极真空管需要一个约5 mA的静态阳极电流(图1)。如果阳极的静态dc电压为60V,则负载阻抗不得超过12 kΩ。真空管的0.5-MΩ阳极电阻与1-MΩ的下级负载相对于12-kΩ负载可以忽略不
[电源管理]
用一只真空管获得450倍<font color='red'>增益</font>
新兴应用和工艺进步推动工业运算放大器市场
     作为电路设计中最基本的器件,运算放大器可以构造信号放大、信号传输、信号滤波等各种功能的电路,广泛应用于通信、PC、消费、汽车和工业等领域中。和日新月异的消费应用相比,由于工业应用中性能、稳定和可靠性压倒一切,工业运算放大器技术和市场平稳得沉闷。不过,手持仪表和便携医疗设备等新兴工业应用,已促使低电压、单电源等消费应用技术趋势进入工业领域。即使在最为传统的±15V工业市场,TI、ADI、国半和凌力尔特等领先供应商也纷纷发布了新一代垂直工艺,将低功耗和小体积等特性引入了高压放大器。 通信产品对放大器需求增长迅速,而工业应用则相对平缓。       市场调研公司Databeans的数据显示,2006年全球放大器市
[工业控制]
18 GHz移动通讯回程中MMIC放大器运用
  为满足第四代数据传输服务的需要,无线通讯业已向LTE(长期演进)迅猛发展。虽然某些地区的不同标准将仍将继续存在,世界上绝大部分的无线系统运营商会将依赖LTE作为他们4G平台的所有或相当大的组成部分。LTE能实现如高质量视频流传输和文件速传等数据密集应用。然而,在3G向LTE(WiMAX也是一样)演进过程中无线运营商会面临两个重大挑战:1.运营商需要处理由数据密集应用而产生的数量巨大的上行下行通信。2.运营商需要提高将数据从无线基站到网络中心的回程能力。   回程取决于光纤、微波和毫米波的单独或全部的链接,近来的无线方案都要求射频功率器件和放大器具有极好的性能。TriQuint半导体的TGA4532-SM 1-W GaAs
[网络通信]
用数字隔离技术取代隔离放大器的应用实例
  进行隔离是防止电流在两个通讯点之间流动的一种方法。一般在两种情况下采用隔离:第一种情况是,在有可能存在损坏设备或危害人员的潜在的电流浪涌时。第二种情况是必须避免存在不同地电位和分裂的接地回路的互连。两种情形都是采用隔离来避免电流流过,而允许两点之间有数据或功率传送。   最近在设计及机械设备的使用方面立法方面都有变化,要求在恶劣环境下几乎任何类型的数据采集系统都要有隔离。此外,从传统的单通道隔离系统到采用多通道隔离的应用转变的趋势导致引入了新型隔离策略。这些应用涉及高电压、高速/高精度通信、或者长距离通信。普通的例子如工业I/O系统、传感器接口、电源/调节杆,发动机控制/驱动系统以及仪器仪表。   本文首先回顾了以
[工业控制]
细数音频放大器的分类、重要参数以及相关介绍(二)
二、音频放大器重要参数   1. 电源纹波抑制比(PSRR)电源纹波抑制比(power supply rejection rate)是音频放大器的输入测量电源电压的偏差偶合到一个模拟电路的输出信号的比值。PSRR反映了音频功率放大器对电源的纹波要求,PSRR值越大越好,音频放大器输出音质就越好。      表一:常用的音频放大器性能比较   2. 总谐波失真加噪声(THD+N) 总谐波失真(total harmonic distortion)是指一个模拟电路处理信号后,在一个特定频率范围内所引入的总失真量。噪声(noise)是指通常不需要的信号。有时是由于由于热或者其它物理条件产生的在线路板上的其它电气行为
[模拟电子]
细数音频<font color='red'>放大器</font>的分类、重要参数以及相关介绍(二)
Credo推出用于光收发器/AOC的四通道跨阻放大器
超低功耗TIA,配合Credo光DSP芯片及激光驱动器一起,为超大规模数据中心及网络设备OEM提供完整的光芯片组解决方案 加州圣何塞和中国深圳, 2023年9月5日——Credo Technology是一家提供安全、高速连接解决方案的创新企业。 Credo致力于为数据基础设施市场提供其所必需的高能效、高速率解决方案,以满足其不断增长的带宽需求。Credo今日发布新品:4x50G跨阻放大器(TIA)芯片—— Teal 200,该芯片可用于QSFP56/QSFP-DD 光模块及 AOC,适用于AI及超大规模数据中心等具有高容量,低功耗需求的应用场景。Teal 200支持使用50Gbps PAM-4调制的200Gbps SR4/DR
[模拟电子]
Credo推出用于光收发器/AOC的四通道跨阻<font color='red'>放大器</font>
小广播
热门活动
换一批
更多
最新模拟电子文章
更多每日新闻
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved