一种轨至轨输入的低压低功耗运放的设计

最新更新时间:2006-08-03来源: 电子设计应用关键字:共模  电压  恒定  电路 手机看文章 扫描二维码
随时随地手机看文章

引言

   电源电压逐步下降,晶体管的阈值电压并没有减小,但是运放的共模输入范围越来越小,这使设计出符合低压低功耗要求,输入动态幅度达到全摆幅的运放成为一种必须。本文所设计的具有轨至轨(R-R)输入功能的低压低功耗CMOS运算放大电路,在各种共模输入电平下有着几乎恒定的跨导,使频率补偿更容易实现,适合应用于VLSI库单元及其相关技术领域。


理论模型

基本的轨至轨输入结构

   在较低的电源电压下,运算放大器的输 入级设计是非常重要的。传统的PMOS差动输入级的共模输入电压范围 VCM可表示为:

  (1)

  式中,VSS为负电源电压, VCM为共模输入电压,VDsat为源漏饱和压降,VGSPPMOS的栅源电压。同理,NMOS差动输入级的共模输入电压范围可表示为:

  (2)

  式中,VGSNNMOS的栅源电压。如果将PMOSNMOS差分对互补连接使用,就可以使运放的输入共模范围变为:

   (3)

从而实现了轨至轨的共模输入。图1为轨至轨输入结构的电路示意图。

 
    图1 基本轨至轨输入电路   图2 低压低功耗运算放大器电路


跨导恒定结构

   图1所示的轨至轨输入级电路采用互补折叠式结构,使共模输入电压可以在整个从地到电源电压的范围内工作,如果输入级工作在饱和区,电路的跨导由下面的公式确定:


或者

    (4)

  式中mnmp分别代表NMOSPMOS的迁移率。从上面的公式可以看出,输入级的跨导会随栅源电压和便置电流的变化而变化。因此,当共模输入电平从VDDVSS变 化时,轨至轨输入差分对的跨导从PMOS差分对的跨导变化到PMOS +NMOS差分对的跨导之和,再变化到NMOS差分对的跨导。中间部分跨导gm几乎是其它部分的一倍,这种跨导的变化会使运放的增益误差发生变化,从而使频率特性变差,因此,需要设计一种电路,使轨至轨输入电路具有恒定的跨导。


   目前,可保证R-R输入级的g
m恒定不变的设计方法主要有以下几种:1. 采用双极(BJT)线性互补差分对形式的输入级。 2. 由齐纳二极管将PN差分对的偏置电流连起来实现。 3. 采用冗余的差分对来实现。4. 用电流镜技术,使偏置电流的大小随输入共模电压的变化而变化。

上述第4种方法的电路不仅结构简单,而且对gm的控制也易于实现。因此,本文运用了对输入跨导的控制原理,采用了一种 全新的保持R-R输入级gm为常数的电路结构。

 

电路设计

   本文所设计的电路如图2所示,该电路由输入互补差分对、恒定gm电路、共源共栅求和电路组成。M1~M4构成了输入互补差分对。当低共模输入时,P输入差分对M1M4处于工作状态,N输入差分对M2M3截止,开关管M17 M18开启,抽取M16上的电流;M13M14截止。M15的电流全部流入P差分对,则此区间的等效差分跨导为:

    (5)


   当共模输入电压在中间值附近时, P差分对M
1M4N差分对M2M3均导通,控制开关M17M18M13M14开启,分别调节它们的栅电压,使其从M15M16均抽取3/4的电流,则此区间的等效差分跨导为:

   (6)


   当在高共模输入区时,N差分对M
2M3工作,P差分对M1M4截止。开关管M13M14开启,抽取M15上的电流,开关管M17M18截止,M16的电流全部流入N差分对,则此区间的等效差分跨导为:

     (7)


   从上面的分析可知,只要合理选择四个输入管子的长宽比,满足如下关系:

    (8)

gm就会保持恒定。  


   M
5~M12为共源共栅求和电路。这种结构的输出阻抗和电压增益比较高,并且有很好的频率特性和电源抑制比。经过分析可知,该电路结构在互补差分对交替工作的时候,当M1M4M2M3不能同时处于饱和状态时,引起求和电路M5~M12的静态电流发生变化,使电路的输出电阻和极点发生少许改变,从而可能会在过渡区出现大跨导尖峰,但是,由于这个过渡区很窄,估计这种大的尖峰不会出现,在整个共模范围内,输入跨导基本保持恒定。


图3 运放的跨导仿真结果

 

仿真结果

   本文采用TSMC公司的0.35mm工艺器件的HSpice参数模型进行仿真,得到下面的结果。图3是运放的总跨导,从图中可以看出,当共模输入电压从0V2V变化时,整个跨导在5%以内变化,跨导在中部的变化正如上面所述,是由于 差动对交替工作时,静态电流的变化所引起的。

 

结语

   本文所设计的运算放大器具有2V的电源电压,150mW的功耗和75°的相位裕度,在整个共模范围内,输入级的跨导基本保持恒定,提高了运放的性能指数。且结构简单,特别适合作为VLSI的库单元。

关键字:共模  电压  恒定  电路 编辑: 引用地址:一种轨至轨输入的低压低功耗运放的设计

上一篇:自适应前馈射频功率放大器设计
下一篇:一种轨至轨输入的低压低功耗运放的设计

推荐阅读最新更新时间:2023-10-12 20:11

混合集成电路的EMC设计
1引言   混合集成电路(Hybrid Integrated Circuit)是由半导体集成工艺与厚(薄)膜工艺结合而制成的集成电路。混合集成电路是在基片上用成膜方法制作厚膜或薄膜元件及其互连线,并在同一基片上将分立的半导体芯片、单片集成电路或微型元件混合组装,再外加封装而成。具有组装密度大、可靠性高、电性能好等特点。   随着电路板尺寸变小、布线密度加大以及工作频率的不断提高,电路中的电磁干扰现象也越来越突出,电磁兼容问题也就成为一个电子系统能否正常工作的关键。电路板的电磁兼容设计成为系统设计的关键。   2电磁兼容原理   电磁兼容是指电子设备和电源在一定的电磁干扰环境下正常可靠工作的能力,同时也是电子
[模拟电子]
混合集成<font color='red'>电路</font>的EMC设计
示波器理想电压探头模式测量开关电源输出
  电源的额定输出功率,电压,电压频率是关系用电负载能否正常工作的三个最重要的电源技术指标。开关电源以小型、轻量和高效率的特点被广泛应用于以电子计算机为主导的各种终端设备、通信设备等几乎所有的电子设备,是当今电子信息产业飞速发展应用最普遍一种电源方式。    开关电源 适用面很广,现在有关开关电源的输出电压特性,有的产品说明书标明是直流电压,有的实验证明是工频脉冲电压。有产品标明是20—500KHZ以上的高频电压。到底开关电源输出的电压频率是多少?电压占空比是多少?从可查阅的开关电源输出电压波形科技图片资料、生产厂家的产品都不够明确,说明目前还没有比较有说服力的实验方法可以把各种开关电源类型的电压特性,都能进行确定的测量方式。
[电源管理]
示波器理想<font color='red'>电压</font>探头模式测量开关电源输出
封闭式组合电器隔离开关产生的过电压
1 SF6封闭式组合电器中的特快速暂态现象   近年来,GIS在国际上得到了广泛应用。然而运行经验表明,GIS隔离开关在例行操作时不仅会在GIS主回路引起对地故障 ,而且还会造成相邻设备(如变压器等)的绝缘损坏 。   因此国内用户对这一问题的关切程度也在增加,本文在这方面做了一些工作,这里作简要的介绍。     当隔离开关两侧电压Va高于VR时隔离开关被击穿,过渡过程完成后,隔离开关两侧电位基本相等,电弧熄灭,电路原理如图2所示。由于负荷侧母线泄露电阻很大,所以保持熄弧瞬间电压V1不变,在示波图上表现为一段水平直线。而电源侧电压随电源Vs而变。当它们的差值Va再次超过VR时,隔离开关复燃。这一过程会在隔离开关打开的过程中不断发
[电源管理]
有助于无线探头测量感应式电源的低功耗电压
为执行长期监视任务的便携式遥测系统供电,向人们提出了有趣的设计挑战。电池不适合于某些关键性应用,且在这些环境中,设计人员一般用无线感应链路来传输功率与数据。感应链路由一个驱动固定初级线圈的射频发射器与一个为便携式装置提供电源的松耦合次级线圈组成。对设计工程师来说,测量发射功率相当重要,因为它会限制设计人员可包含至便携式装置中的电路数量。但不幸的是,传统测试设备不适合执行该任务,因为标准电压探头会拾取初级线圈上感应的噪声,且在某些应用中,便携式装置密封在一个不能接入电缆或探头的小盒子中。   图1所示电路可减少噪声效应,因其VFC(电压-频率转换器)可产生对噪声进行积分或取平均的PPM(脉冲位置调制)输出信号VOUT。此
[测试测量]
电压电流变送集成电路AM462原理及应用
模拟 电路 接口 工业上通常用电压0-5(10)V 或电流0(4)-20mA 作为模拟信号传输的方法,也是被程控机经常采用的一种方法。那么电压和电流的传输方式有什么不同,什么时候采用什么方法,下面将对此进行简要介绍。 电压信号传输 比如0-5(10)V 如果一个模拟电压信号从发送点通过长的电缆传输到接收点,那么信号可能很容易失真。原因是电压信号经过发送电路的输出阻抗,电缆的 电阻 以及接触 电阻 形成了电压降损失。由此造成的传输误差就是接收电路的输入偏置电流乘以上述各个电阻的和。如果信号接收电路的输入阻抗是高阻的,那么由上述的电阻引起的传输误差就足够小,这些电阻也就可以忽略不计。要求不增加信号发送方的费用又要所提及的
[模拟电子]
<font color='red'>电压</font>电流变送集成<font color='red'>电路</font>AM462原理及应用
简述红外自控智能LED照明系统电路
  LED照明正在向智能化方向发展,目的是为了更好的节省能源和实现智能控制,智能化需要将传感技术、信号智能处理技术、电子控制执行技术整合在一个系统里,LED光源模组的点亮还需要用直流恒流电源驱动。    红外自控LED节能灯具系统方案设计思路   具体的红外自控LED节能灯具产品方案设计思路,应依据信号采集和处理的路径,设计各功能部分,整体上满足产品设计的目标。红外传感器输出的信号很小,必须加以放大才能使用,因此红外自控LED节能灯具系统方案设计思路如图6所示,将红外传感器的微弱信号通过一个四运放( LP2902M )的仪表放大器放大和比较,经 CD4538 多谐振荡器组成的计时器电路,再经一大功率三极管驱动继电器实现LED电源
[电源管理]
简述红外自控智能LED照明系统<font color='red'>电路</font>
可调型压控电流源电路
  LT®3086 是一款多功能、低压差、低噪声 2.1A 线性稳压器,其可在一个 1.4V 至 40V 的输入电源范围内运作。在 2.1A 电流条件下的压差电压通常为 330mV。一个电阻器负责将输出电压设定在 0.4V 至 32V 的范围内。输出电压容差在整个电压、负载和温度范围内保证为 ±2%。LT3086 可在采用陶瓷输出电容器 (所需的最小值为 10μF) 时保持稳定。LT3086 的可编程电缆压降补偿可消除由至负载的阻性连接所引起的输出电压误差。一种主 / 从配置允许并联多个器件以提供较高的负载电流和散热量,而无需使用外部镇流电阻器。输出电流和温度监视以及一个电源良好标记提供了系统诊断和调试能力。内部故障保护电路包括热
[电源管理]
可调型压控电流源<font color='red'>电路</font>图
51单片机驱动步进电机电路及程序
在这里介绍一下用51单片机驱动步进电机的方法。   这款步进电机的驱动电压12V,步进角为 7.5度 . 一圈 360 度 , 需要 48 个脉冲完成!!!      该步进电机有6根引线,排列次序如下:1:红色、2:红色、3:橙色、4:棕色、5:黄色、6:黑色。   采用51驱动ULN2003的方法进行驱动。      ULN2003的驱动直接用单片机系统的5V电压,可能力矩不是很大,大家可自行加大驱动电压到12V。   ;******************************************************************
[单片机]
51单片机驱动步进电机<font color='red'>电路</font>及程序
小广播
最新模拟电子文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved