LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。LM324的引脚排列见图2。
图 1
图 2
由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。
下面介绍其应用实例。
反相交流放大器电路见附图。此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。电路无需调试。放大器采用单电源供电,由R1、R2组成1/2V+偏置,C1是消振电容。
放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。负号表示输出信号与输入信号相位相反。按图中所给数值,Av=-10。此电路输入电阻为Ri。一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。Co和Ci为耦合电容。
同相交流放大器见附图。同相交流放大器的特点是输入阻抗高。其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。R4的阻值范围为几千欧姆到几十千欧姆。
交流信号三分配放大器
此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。而对信号源的影响极小。因运放Ai 输入电阻高,运放 A1-A4 均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时 Rf=0 的情况,故各 放大器电 压放大倍数均为 1 ,与分立元件组成的射极跟随器作用相同
R1、R2组成1/2V+偏置,静态时A1输出端电压为1/2V+,故运放A2-A4输出端亦为1/2V+,通过输入输出电容的隔直作用,取出交流信号。
有源带通滤波器
许多音响装置的频谱分析器均使用此电路作为带通滤波器,以选出各个不同频段的信号,在显示上利用发光二极管点亮的多少来指示出信号幅度的大小。这种有源带通滤波器的中心频率 ,在中心频率fo处的电压增益Ao=B3/2B1,品质因数 ,3dB带宽B=1/(п*R3*C)也可根据设计确定的Q、fo、Ao值,去求出带通滤波器的各元件参数值。 R1=Q/(2пfoAoC),R2=Q/((2Q2-Ao)*2пfoC),R3=2Q/(2пfoC)。
上式中,当fo=1KHz时,C取0.01Uf。此电路亦可用于一般的选频放大。
此电路亦可使用单电源,只需将运放正输入端偏置在1/2V+并将电阻R2下端接到运放正输入端既可。
比较器
当去掉运放的反馈电阻时,或者说反馈电阻趋于无穷大时(即开环状态),理论上认为运放的开环放大倍数也为无穷大(实际上是很大,如LM324运放开环放大倍数为100dB,既10万倍)。此时运放便形成一个电压比较器,其输出如不是高电平(V+),就是低电平(V-或接地)。当正输入端电压高于负输入端电压时,运放输出低电平。
附图中使用两个运放组成一个电压上下限比较器,电阻R1、R1ˊ组成分压电路,为运放A1设定比较电平U1;电阻R2、R2ˊ组成分压电路,为运放A2设定比较电平U2。输入电压U1同时加到A1的正输入端和A2的负输入端之间,当Ui >U1时,运放A1输出高电平;当Ui 会点亮。
若选择U1>U2,则当输入电压Ui越出[U2,U1]区间范围时,LED点亮,这便是一个电压双限指示器。
若选择U2 > U1,则当输入电压在[U2,U1]区间范围时,LED点亮,这是一个“窗口”电压指示器。
此电路与各类传感器配合使用,稍加变通,便可用于各种物理量的双限检测、短路、断路报警等。
单稳态触发器
见附图5。此电路可用在一些自动控制系统中。电阻R1、R2组成分压电路,为运放A1负输入端提供偏置电压U1,作为比较电压基准。静态时,电容C1充电完毕,运放A1正输入端电压U2等于电源电压V+,故A1输出高电平。当输入电压Ui变为低电平时,二极管D1导通,电容C1通过D1迅速放电,使U2突然降至地电平,此时因为U1>U2,故运放A1输出低电平。当输入电压变高时,二极管D1截止,电源电压R3给电容C1充电,当C1上充电电压大于U1时,既U2>U1,A1输出又变为高电平,从而结束了一次单稳触发。显然,提高U1或增大R2、C1的数值,都会使单稳延时时间增长,反之则缩短。
图 5 图 6
如果将二极管D1去掉,则此电路具有加电延时功能。刚加电时,U1>U2,运放A1输出低电平,随着电容C1不断充电,U2不断升高,当U2>U1时,A1输出才变为高电平。参考图6。 |
关键字:输出 电容 二极管
编辑: 引用地址:LM324四运放的应用
推荐阅读最新更新时间:2023-10-12 20:12
电容传感器测量系统模块电路设计之精密放大电路
基于海上溢油回收的特殊环境,该文设计了一种基于AT89S51单片机的海上液位测量系统。该系统采用分段电容检测的原理,以实现油水双液位的检测。合理搭建了微小电容测量的硬件电路。系统可以准确无误地应用于海上油位的测量。 方波产生电路 图4 方波产生电路 由NE555构成的多谐振荡器是二极管交流电桥测量的方波信号源,其具体电路如图4所示。频率计算如式(4)、式(5)和式(6)所示。 (4) (5) (6) 令 , , ,则: 。因此,NE555可以为电容检测电路提供电压幅值为5V、频率为500kHz的方波信号源。 双T二极管交流电桥电容测量电路 电容传感器
[单片机]
动态控制开关稳压器的输出电压
随着半导体行业遵循摩尔定律不断发展,处理器对电源的需求也正以惊人的速率在增长。在电源管理至关重要的电池供电应用中,处理器会根据时钟速率的增加或减少,调节其相应的内核工作电压,从而在需要高速处理的时候全功率供电,在处理器空闲的时候避免浪费剩余功率。但是,为处理器寻找有控制输出电压功能的开关稳压器集成电路(IC)是很困难的,而且价格通常比普通的开关稳压器高很多。图1所示的电路是为嵌入式处理器供电的经济有效的解决方案,该方案采用了简单的降压式开关稳压器,处理器BF531通过低成本数字电位器AD5258,设置降压式开关稳压器ADP3051的输出电压。
图1 嵌入式处理器BF531的供电电路
在该电路中,启动V
[电源管理]
投射式电容触摸屏
iPhone以及Prada等较新较高端的触摸屏手机所采用的技术。电容式触控屏利用人体的电流感应进行工作。电容式触控屏是一块四层复合玻璃屏,玻璃屏的内表面和夹层各涂有一层ITO(镀膜导电玻璃),最外层是一薄层矽土玻璃保护层, ITO涂层作为工作面, 四个角上引出四个电极,内层ITO为屏蔽层以保证良好的工作环境。当手指触摸在金属层上时,由于人体电场、用户和触控屏表面形成以一个耦合电容,对于高频电流来说,电容是直接导体,于是手指从接触点吸走一个很小的电流。这个电流分别从触控屏四角上的电极中流出,并且流经这四个电极的电流与手指到四角的距离成正比,控制器通过对这四个电流比例的精确计算,得出触摸点的位置信息。
所以说电容式触控屏轻轻
[工业控制]
凌利尔特具用输出断接的低噪声升压型转换器
2008 年 7 月 28 日 , 凌力尔特公司 ( Linear Technology Corporation ) 推出低噪声升压型转换器 LT3495/-1 ,该器件具集成的电源开关、肖特基二极管和输出断接电路。 LT3495 使用 650mA 开关,而 LT3495-1 使用 350mA 开关。这两款器件都采用 2mm x 3mm DFN-10 封装。 2.3V 至 16V 的宽输入电压范围使它们能够用高达 12V 固定输入电源轨的单节锂离子电池工作,同时提供高达 40V 的输出。 LT3495 可用单节锂离子电池在 16V 时提供超过 70mA
[电源管理]
HV2405E输出电压的设定方式电路
HV2405E输出电压的设定方式电路
图中a所示,可用三种方法使输出电压高于5V,图中b是最简单方法。增加5.6脚间电阻R2以增大反馈,但损耗较大,图s是外部用电阻分压器,电阻很小,在5脚只有1MA损耗,图是在5与6脚间接稳压管,通过设定稳压管在1MA时的击穿电压来设定输出电压,HV-240E内的稳压管限制输出电压最高为24V。
[电源管理]
一种多功能输出开关电源
摘要:介绍了一种可以多功能宽范围输出的开关电源。详述了电源的基本电路结构和控制策略,介绍了电路多功能的实现,分析了电路中可能存在的问题并给出了解决方案。最后通过试验验证了此设计。关键词:多功能输出;直流电源;逆变器
Design of a Multifunctional Power Supply
MA Jie, LU Zheng-yu
Abstract:A special design of wide range outputting and multifunctional power supply is presented. The topology of the circuit and its control
[电源管理]
如何用万用表去辨别电容的好坏
不知道怎么用万用表去辨别电容的好坏,特别是那些超出万用表量程的电容,今天就给大家讲述一下如何用万用表去辨别电容的好坏,特别是那些容量比较大的电容,废话不多说直入主题。 直接观察去辨别 一般电容如果坏掉,从外观上能够辨别出来,其中最明显的特点就是会裂开,有明显的损坏的痕迹,例如下面的张图片就是电容爆炸的实拍图,这种方法很容易辨别,在电路中的电容也有很多由于爆炸而损坏的,所以这种方法还是很好用的。 用万用表电容档去辨别 对于容量较小的电容其实是可以直接用万用表的电容档去辨别,用万用表测电容还算比较简单,即使电容是区分正负极,但是用万用表去测的时候并不区分正负极,在电容的外面一般也会标注电容的容量大小,所以可以根据万用表测出的容
[测试测量]
无源器件,电容并不总是容性的!
在理想元件理论中,电容表现为容性。然而,这仅在特定的工作条件下成立,且取决于频率范围。本文重点 介绍不同电容的阻抗特性,并说明电容何时会表现为容性,何时不表现为容性。 通常用阻抗和频率来表示电容的频率特性。通过研究这些频谱,可获得大量电化学、物理和技术相关信息 。由于在某些情况下,产品规格书无法提供所有数据,工程师们不得不依靠测得的频谱为电路设计选择合适的元件。为了尽可能完善数据库,伍尔特电子 (Würth Elektronik eiSos, WE) 采用在线工具 REDEXPERT 为用户提供频谱和其他测量数据。 通过图 1 所示的电路,几乎可以对所有类型电容阻抗与频率的变化关系进行建模,包括多层陶瓷电容 (MLCC
[电源管理]