一种折叠共源共栅运算放大器的设计

最新更新时间:2007-04-27来源: 现代电子技术关键字:滤波  基准  比较  电容 手机看文章 扫描二维码
随时随地手机看文章

1 引言

随着集成电路技术的不断发展,高性能运算放大器广泛应用于高速模/数转换器(ADC)、数/模转换器(DAC)、开关电容滤波器、带隙电压基准源和精密比较器等各种电路系统中,成为模拟集成电路和混合信号集成电路设计的核心单元电路,其性能直接影响电路及系统的整体性能,高性能运算放大器的设计一直是模拟集成电路设计研究的热点之一,以折衷满足各种应用领域的需要。

许多现代集成CMOS运算放大器被设计成只驱动电容负载。有了这样只有电容的负载,对于运放放大器,就没有必要使用电压缓存器来获得低输出阻抗,因此,有可能设计出比那些需要驱动电阻负载的运算放大器具有更高速度和更大的信号幅度的运算放大器。通过在一个只驱动电容负载的运算放大器输出端只有一个高阻抗节点,可以获得这些提高,这些运算放大器在其他节点看到的导纳与MOS管的跨导在一个量级上,因此他们具有低阻抗。

有了所有相对低阻抗的内部节点,运算放大器的速度得到最大化,这里还应该提到的是:这些低节点阻抗使得所有节点而不是输出节点的电压信号降低,然而,各种晶体管的电流信号可能非常大,对这些运算放大器,应看到补偿通常是由负载电容达到的,这样,当负载电容变大,运算放大器通常变得更稳定也更慢,这些现代晶体管最重要的参数之一是他们的跨导值(即输出电流和输入电流的比)。因此,一些设计者称这些现代运算放大器为跨导运算放大器或者运算跨导放大器(OTA)。

在各种OTA结构中,折叠共源共栅运放结构的运算放大器可以使设计者优化二阶性能指标,这一点在传统的两极运算放大器中是不可能的,特别是共源共栅技术对提高增益、增加PSRR值和在输出端允许自补偿是有用的。这种灵活性允许在CMOS工艺中发展高性能无缓冲运算放大器,目前,这样的放大器已被广泛应用无线电通信的集成电路中。

本文介绍的运放是一种采用TSMC 0.18 μm Mixed Signal SALICIDE(1P6M,1.8V/3.3V)CMOS工艺的折叠共源共栅运放,并对其进行了DC,AC及瞬态分析,最后与设计指标进行比较。

2 电路结构分析

如图1所示,该图是一个差动输入单端输出设计,他的基本思想是将共源共栅MOS管应用于输出差动对中,但使用的MOS管与输入级中使用的那些MOS管类型相反,例如,图中由M1和M2组成的差动对MOS管为N沟道。而由M1c和M2c组成的共源共栅MOS管是P沟道MOS管,这种相反类型MOS管得安排允许这个单增益级放大器的输出在相同偏置电压水平上作为输入信号。应该提到的是:即使一个折叠式共源共栅放大器基本上是一个单增益级,他的增益也可能非常合理,约为700-3000。出现这样一个高增益是因为增益是由输入跨导和输出阻抗的情况决定的,输出阻抗由于使用了共源共栅技术而非常高。

图中显示的差动到单端的转变是由M5,M5c,M6,M6c。组成的宽幅镜像电流源实现的,在差动输出设计中,这些可能被2个宽幅共源共栅电流吸收器所代替,并且可以添加共模反馈电路。

补偿通过负载电容CL实现,并实现了主要极点补偿。在负载电容非常小的应用中,有必要添加附加的补偿电容与负载并联来保证稳定性。如果想要超前补偿,可以添加一个电阻与CL串联,当在一些应用中不可能实现超前补偿时,例如当补偿电容主要由负载电容提供时,这种方法在很多情况下都适用,而许多设计者似乎没有意识到这一点(也就是说,在很多情况下,都可以在负载电容上串联一个电阻)。

输入差动对MOS管的偏置电流等于Ib1/2。P沟道共源共栅MOS管在任意一个(M1c或者M2c)的偏置电流,等于M3或者M4的漏极电流减去 Ib1/2,因为(W/L)3=(W/L)4=(W/L)8b,所以这个漏极电流由Ib和(W/L)81/(W/L)11比率确定,由于共源共栅晶体管之一的偏置电流由电流相减得到,所以他要准确建立,需要Ib2和Ib3从一个单偏置网络得到。此外,得到这些电流的任何镜像电流源应由单位大小的MOS管并联形成的MOS管组成,这种方法可以消除宽度不同的MOS管引起的二阶效应造成的误差。

3 测试分析

Vdd=3V,Ib=62.5μA,CL=5pF

图1中各MOS管的参数如表1所示。

对图1所示的运算放大器进行仿真,开环结构的电压传输曲线、频率响应、小信号增益、输出和输出电阻都可以仿真。

从图2中看出:开环输出电压摆幅从0.3-2.7V,最后得到仿真结果与设计指标的比较,见表2。 



4 结语

本文解释的运放是一种折叠共源共栅运放,具有高直流开环增益、低输入失调电压、高速等特点,TSMC0.18混合信号双阱CMOS工艺的BSIM3(V3.2)模型参数,利用HSpice W-2005.03等仿真工具对其进行了DC,AC及瞬态分析。

仿真结果表明,本文实现的运放具有73dB的直流开环增益,在5pF的负载电容条件下,运放的单位增益频率为3MHz,相位裕度为88°,输出电阻为47.8MΩ。

可以看出,设计几乎是令人满意的,微小的调节可以通过改变W/L比或直流使放大器工作在指定的范围。

关键字:滤波  基准  比较  电容 编辑: 引用地址:一种折叠共源共栅运算放大器的设计

上一篇:利用比较器电路方便地转换电平和极性
下一篇:精密差分输出仪表放大器应用电路的设计

推荐阅读最新更新时间:2023-10-12 20:12

数字调谐滤波器原理及各种解决方案分析
   0 引 言   需要传送的数字或模拟信号信息一般是低频信号,必须被载波调制到特定射频段才能通过天线发射出去。随着通讯技术发展,定载频技术在军事通讯中的保密、抗干扰、频带利用等方面逐渐暴露出问题,为解决这些问题,跳频(Frequency Hopping Spread Spectrum,FH-SS)通讯技术逐步发展起来。数字调谐滤波器是跳频系统中随计算机控制技术出现后发展起来的一类数字调谐控制频带的、有一定功率容量的滤波器。    1 数字调谐滤波技术发展现状   传统的定载频信号发信机被传送的信息可以是模拟的或数字的信号形式,信号经过调制,获得副载波频率固定的已调波信号,再与频率合成器输出的主载波频率信号进行
[模拟电子]
基于ADSP-BF533处理器的去方块滤波器的实现及优化
   引言   在已有的基于块的视频编解码系统中,当码率较低时都存在方块效应,新的视频编码标准H.264中亦是如此。产生这种方块效应的主要原因有两个:一是由于对变换后的残差系数进行的基于块的整数变换后,以大的量化步长对变换系数进行量化会使得解码后的重建图像的方块边缘出现不连续;二是在运动补偿中插值运算引起的误差使得编解码器反变换后的重建图像会出现方块效应。如果不进行处理,方块效应还会随着重构帧积累下去,从而严重地影响图像的质量和压缩效率。为了解决这一问题,H.264中的去方块滤波技术采用较为复杂的自适应滤波器来有效地去除这种方块效应。因此,如何在实时视频解码中优化去方块滤波算法,降低计算复杂度,提高重建图像质量,就成了H.2
[工业控制]
具有60dB增益的带通有源滤波器电路图
具有60dB增益的带通有源滤波器电路图
[模拟电子]
具有60dB增益的带通有源<font color='red'>滤波</font>器电路图
基于单片机的直接数字频率合成器的设计
1 引 言 频率合成技术迄今已经历了三代:直接频率合成技术、锁相环频率合成技术、直接数字式频率合成技术。直接数字式频率合成(Direct Digital Frequency Synthesis,DDFS或DDS)是第三代频率合成技术的标志,他的主要特点是计算机参与频率合成,既可以用软件来实现,也可以用硬件来实现,或二者结合。直接数字式频率合成器的最大优点就是频率切换的速度极快(可达几微秒),并且频率、相位和幅度都可控,输出频率稳定度可达系统时钟的稳定度量级,易于集成化,更主要的是由于计算机参与频率合成,故可充分发挥软件的作用。虽然现有的专用DDFS芯片的功能也比较多,但控制方式却是固定的,因此不一定是我们所需要的。本文利用80C
[应用]
铝电解电容器紧凑型焊片式系列亮相高交会
TDK 公司近日发布了一款新的爱普科斯 (EPCOS) 焊片式系列铝电解电容器。新系列电容器的 纹波电流能力比之前的爱普科斯 (EPCOS) 系列增强了多达 25%,其中新 B43642*系列电容器 尺寸紧凑:直径为 22 mm 至 35 mm,高度为 25 mm 至 55 mm。 该系列电容器额定电压范围为 200 V DC 至 450 V DC,容量范围为 82 µF 至 3300 µF,在 105°C 的温度条件下连续工作时使用寿命可达 3000 小时。 这些新型焊片式铝电解电容器可满足工业变频器和电源的应用需求。 ----- 主要应用 • 适用于工业变频器和电源
[工业控制]
铝电解<font color='red'>电容</font>器紧凑型焊片式系列亮相高交会
马达损耗9成可预测,双电层电容器“上车”
  日经BP社于2012年6月举办了“AutomotiveTechnology Day 2012 summer”(图1)。各公司公开了混合动力车(HEV)及纯电动汽车(EV)基础技术。 图1:多家公司就HEV/EV基础技术发表演讲。图为丰田汽车的水谷良治。   丰田汽车的水谷良治主要介绍了车载马达的分析技术。将马达转动时的损耗细分为转子铁损、磁损及定子线圈铜损。水谷指出“如果找不到损耗发生在哪里,就无法采取对策”。据水谷介绍,通过对马达的实际损耗进行分析,已经能够预测9成以上的损耗发生在何处(图2)。 图2:实际损耗与分析的损耗结果非常接近 摘自丰田的演讲资料。在各工作点上,比较了实测值和分析
[汽车电子]
马达损耗9成可预测,双电层<font color='red'>电容</font>器“上车”
2GHz-4GHz梳型超宽带滤波器设计
1 引言 由于超宽带通信和雷达的应用多种多样,所以超宽带滤波器的设计方法也相当多样。许多学者研究了多种微带结构的超宽带滤波器。虽然微带滤波器的尺寸很小,并且很容易和其他表面装配器件集成,但是其插损往往都非常大。插损值一般都大于5dB 。微带滤波器还有一个问题就是其带外抑制往往都不太好。在本文中,我们给出了一种通带为2GHz到4GHz,阻带抑制达到11.23GHz的梳型超宽带滤波器设计方法。 2 滤波器设计 图1为11级梳型滤波器的结构示意图。方波导的宽度为a,高度为b,其中有11个方柱,每个方柱具有相同的宽度w。柱子的高度和相邻柱子的间距的定义如图1所示。输入和输出采用SMA接头。SMA内导体端接的小圆盘直径和高度分别定义为
[电源管理]
2GHz-4GHz梳型超宽带<font color='red'>滤波</font>器设计
探究数字可调谐滤波器如何支持宽带接收器应用
引言 为了不断减小尺寸、重量、功率和成本,同时提高或保持性能,RF系统设计人员有必要评估信号链中的每个组件,并寻找创新机会。由于通常滤波器会占用大量的电路板空间,因此这是考虑减小尺寸时寻求突破的重点领域。 同时,接收器的架构也在不断发展,模数转换器(ADC)能够以更高的输入频率采样。随着ADC输入频率的提高,信号链中对滤波器的限制也发生了变化。一般来说,这种趋势意味着对滤波器的抑制要求有所放宽,这为进一步优化尺寸和调谐性能提供了机会。 在开始探索之前,首先将概述射频信号链和各项定义,以便说明需要使用滤波器的位置及其原因。此外,回顾传统技术也有助于洞察现状。然后,通过比较这些传统技术和最新的产品解决方案,可以清楚地看到系
[模拟电子]
探究数字可调谐<font color='red'>滤波</font>器如何支持宽带接收器应用
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved