解密RF信号链:特性和性能指标

发布者:EE小广播最新更新时间:2021-08-03 来源: EEWORLD作者: ADI公司 Anton Patyuchenko,现场应用工程师关键字:RF  信号链  ADI 手机看文章 扫描二维码
随时随地手机看文章

简介


从历史的角度来看,就在不久之前,也就是20世纪初,支持RF信号链的RF工程学还是一门新兴的学科。如今,RF技术和射频器件深深根植于我们的生活,没有它们,现代文明可能不会存在。生活中有无数非常依赖RF信号链的示例,这将是我们讨论的焦点。


在我们深入探讨之前,我们先来了解RF的实际含义。乍一看,这似乎是一个简单的问题。我们都知道,RF表示射频,此术语的通用定义规定了特定的频率范围:MHz至GHz电磁频谱。但是,如果我们仔细查看其定义并进行比较,就会发现,它们只是对RF频谱的实际边界的定义不同。鉴于我们可能经常在与特定频率无关的其他环境中广泛使用该术语,所以,此术语变得更加令人费解。那么,RF是什么?


通过关注RF的突出特性,包括相移、电抗、耗散、噪声、辐射、反射和非线性,可以确立一致的定义基础,涵盖多种含义。1这个基础代表了现代包罗万象的定义,不依赖于单个方面或特定数值来区分RF和其他术语。术语RF适用于许多具有构成此定义 特性的任何电路或组件。


我们已设定了本次探讨的背景,现在可以开始进入正题,分析图1中的通用RF信号链。其中使用分布式元件电路模型来体现电路中的相位偏移,在较短的RF波长下这种偏移不可忽略,因此该集总电路的近似表示不适用于这些类型的系统。RF信号链中可能包括各种各样的分立式组件,如衰减器、开关、放大器、检测器、合成器和其他RF模拟器件,以及高速ADC和DAC。将所有这些组件组合起来用于特定应用,其总体标称性能将取决于这些分立式组件的组合性能。


 image.png

图1.一个通用RF信号链


因此,为了设计一个能够满足目标应用的特定系统,RF系统工程师必须能够真正从系统级视角考虑,且对基础的关键概念和原则有一致的理解。这些知识储备非常重要,为此,我们编写了这篇讨论文章,它包含两个部分。第一部分的目标是:简要介绍用于确定RF器件的特性和量化其性能的主要特性和指标。第二部分的目标是:深入介绍可用于针对所需应用开发RF信号链的各种单个组件及其类型。在本文中,我们将重点讨论第一部分,并考虑与RF系统相关的主要特性和性能指标。


RF术语简介


目前有多种参数用于描述整个RF系统及其分立式模块的特性。根据应用或用例,其中一些特性可能极其重要,其他特性则不太重要或无关紧要。仅通过本文,肯定无法对如此复杂的主题展开全面分析。但是,我们将尝试按照共同的思路,也就是将一系列复杂的相关内容转变为平衡、易于理解的RF系统属性和特性指南,从而简明全面地概述最常见的RF性能。


基本特性


散射矩阵(或S矩阵)是在描述RF系统行为时需要用到的一个基本术语。我们可以使用S矩阵,将复杂的RF网络表示为简单的N端口黑盒。常见的2端口RF网络(例如放大器、滤波器或衰减器)示例如图2所示,其中Vn+是n端口入射波电压的复振幅,Vn– 是n端口反射波电压的复振幅。2当其所有端口都以匹配负载端接时,我们可以通过散射矩阵来描述该网络,其中的元素(或S参数)根据这些电压波之间的关系来量化RF能量如何通过系统传播。现在,我们使用S参数来表示典型RF网络的主要特性。


 image.png

图2.用S矩阵表示的2端口网络



在网络匹配的情况下,S21相当于端口1到端口2的传输系数(S12也可以按类似方法定义)。以对数标度表示的幅度|S21|代表输出功率与输入功率的比值,称为增益或标量对数增益。此参数是放大器和其他RF系统的重要指标,它也可以取负值。负增益表示固有损耗或失配损耗,通常用其倒数表示,即插入损耗(IL),这是衰减器和滤波器的典型指标。


如果我们现在考虑同一端口的入射波和反射波,则可以如图2所示来定义S11和S22。当其他端口以匹配负载端接时,这些项相当于相应端口的反射系数|Γ|。根据公式1,我们可以将反射系数的大小与回波损耗(RL)相关联:


 image.png


回波损耗是指端口的入射功率与源极的反射功率之比。根据我们估算这个比值使用的端口,我们可以区分输入和输出回波损耗。回波损耗始终是非负值,表示网络的输入或输出阻抗与朝向源极的端口阻抗的匹配程度。


需要注意的是,IL和RL与S参数的这种简单关系只有在所有端口都匹配的情况下才有效,这是定义网络本身的S矩阵的前提条件。如果网络不匹配,它不会改变其固有的S参数,但可能会改变其端口的反射系数以及端口之间的传输系数。2


频率范围和带宽


我们描述的所有这些基本量将在频率范围内不断变化,这是所有RF系统的共同基本特性。它定义了这些系统所支持的频率范围,并给我们提供了一个更关键的性能度量——带宽(BW)。


虽然此术语可能仅指信号特性,但其某些形式可用于描述处理这些信号的RF系统。带宽一般会定义受某一标准限制的频率范围。但是,它可能具有不同的含义,因具体的应用环境而异。为了使我们的论述更加全面,我们来简单定义一下不同的含义:


  • 3 dB带宽是信号功率电平超过其最大值一半的频率范围。

  • 瞬时带宽(IBW)或实时带宽是指系统在不需要重新调谐的情况下能够产生或获取的最大连续带宽。

  • 占用带宽(OBW)是包含总集成信号功率特定百分比的频率范围。

  • 分辨率带宽(RBW)一般是指两个频率分量(可继续分解)之间的最小间隔。例如,在频谱分析仪系统中,它是最终滤波器级的频率范围。


这只是各种带宽定义中的几个示例;但是,无论其含义如何,RF信号链的带宽很大程度上取决于其模拟前端,以及高速模数转换器或数模转换器的采样速率和带宽。


非线性


需要指出的是,RF系统的特性不仅会随着频率变化,也会随着信号功率电平而变化。我们在本文开头描述的基本特性通常用小信号S参数表示,没有考虑非线性效应。但是,在一般情况下,通过RF网络的功率电平持续升高通常会带来更明显的非线性效应,最终导致其性能下降。


我们在谈论具有良好线性度的RF系统或组件时,通常是指用于描述其非线性性能的关键指标满足目标应用要求。我们来看看这些常用来量化RF系统非线性行为的关键指标。


我们首先需要考虑的参数是输出1 dB压缩点(OP1dB),它定义了通用器件从线性模式转换为非线性模式的拐点,即系统增益降低1 dB时的输出功率水平。这是功率放大器的基本特性,用于将该器件的工作电平设置为趋向饱和输出功率(PSAT)定义的饱和电平。功率放大器通常位于信号链的最后一级,因此这些参数通常定义RF系统的输出功率范围。


一旦系统处于非线性模式,就会使信号失真、产生杂散频率分量,或者杂散。杂散是相对于载波信号(单位:dBc)的电平进行测量,可以分为谐波和交调产物(参见图3)。谐波是处于基波频率的整数倍位置的信号(例如,H1、H2、H3谐波),而交调产物是非线性系统中存在两个或更多基波信号时出现的信号。如果第一个基波信号位于频率f1,第二个位于f2,则二阶交调产物出现在两个信号的和频和差频位置,即f1 + f2和f2 – f1,以及f1 + f1和f2 + f2(后者也称为H2谐波)。二阶交调产物与基波信号相结合,会产生三阶交调产物,其中两个(2f1 – f2和2f2 – f1)特别重要,由于它们接近原始信号,因此难以滤除。包含杂散频率分量的非线性RF系统的输出频谱表示了交调失真(IMD),这是描述系统非线性度的一个重要术语。


 image.png

图3.谐波和交调产物


与二阶交调失真(IMD2)和三阶交调失真(IMD3)相关的杂散分量会对目标信号造成干扰。用于量化干扰严重程度的重要指标为交调点(IP)。我们可以区分二阶(IP2)和三阶(IP3)交调点。如图4所示,它们定义输入(IIP2、IIP3)和输出(OIP2、OIP3)信号功率电平的假设点,在这些点上,相应的杂散分量的功率将达到与基波分量相同的电平。虽然交调点是一个纯数学概念,但它是衡量RF系统对非线性度耐受性的重要指标。


 image.png

图4.非线性特性的定义


噪声


现在我们来看看每个RF系统固有的另一个重要特性——噪声。噪声是指电信号的波动,包含许多不同方面。根据其频谱及其影响信号的方式以及产生噪声的机制,噪声可以分为许多不同的类型和形式。但是,尽管存在许多不同的噪声源,我们也无需为了描述它们对系统性能的最终影响而深入研究其物理特性。我们可以基于简化的系统噪声模型进行研究,该模型使用单个理论噪声发生器,通过噪声系数(NF)这个重要指标来描述。它可以量化系统所引起的信噪比(SNR)的下降幅度,定义为输出信噪比与输入信噪比的对数比。以线性标度表示的噪声系数称为噪声因子。这是RF系统的主要特性,可以控制其整体性能。


对于简单的线性无源器件,噪声系数等于由|S21|定义的插入损耗。在多个有源和无源组件构成的更复杂的RF系统中,噪声由各自的噪声因子Fi和功率增益Gi来描述,根据Friis公式(假设每级的阻抗都匹配),噪声的影响在信号链中逐级降低:

 

image.png


由此可以得出结论,RF信号链的前两级是系统总体噪声系数的主要来源。这正是在接收器信号链的前端配置噪声系数最低的组件(例如低噪声放大器)的原因。


如果我们现在考虑生成信号的专用器件或系统,说到其噪声性能特征,一般是指受噪声源影响的信号特性。这些特性就是相位抖动和相位噪声,用于表示时域(抖动)和频域(相位噪声)中的信号稳定性。具体选择哪个,一般取决于应用,例如,在RF通信应用中,一般使用相位噪声,而在数字系统中,则通常使用抖动。相位抖动是指信号相位内的小波动,相位噪声则是其频谱表示,定义为相对于载波频率不同频偏处,1Hz带宽内的噪声功率,认为在此带宽内功率均衡(参见图5)。

 

image.png

图5.相位噪声特性示例


多种衍生品


到目前为止,我们考虑了多种重要系数,并基于这些系数衍生出很多参数,可用于量化各种应用领域中RF信号链的性能。例如,在噪声和杂散的基础上衍生出动态范围(DR)这个术语,用于描述系统实现所需特性的工作范围。如图4所示,如果该范围的下限由噪声决定,上限由压缩点决定,我们称之为线性动态范围(LDR);如果其上限由最大功率电平(该电平使交调失真变得不可接受)决定,我们称之为无杂散动态范围(SFDR)。需要注意的是,LDR和SFDR的实际定义可能因具体的应用而异。


系统能够处理生成具有指定SNR输出信号的最低信号电平定义了接收器系统的另一个重要特性,即灵敏度。它主要由系统噪声系数和信号带宽决定。接收器本身的噪声会对灵敏度和其他系统技术规格造成限制。例如,数据通信系统中的相位噪声或抖动会导致眼图中的星座点偏离其理想位置,使得系统的误差向量幅度(EVM)降低,误码率(BER)随之增高。


结论


我们可以使用多种特性和性能指标来表征RF信号链。它们涉及不同的系统方面,其重要性和相关性可能因应用而有所不同。虽然我们无法在一篇文章中全面阐述所有这些因素,但如果RF工程师能深入理解本文所探讨的这些基本特性,就可以将它们轻松转化为雷达、通信、测量或其他RF系统等目标应用中的关键要求和技术规格。


ADI凭借业界广泛的RF、微波和毫米波解决方案的组合,以及深厚的系统设计专业知识,能够满足各种严苛的RF应用要求。这些从天线到比特的广泛的分立式和全集成ADI解决方案有助于开启从DC到100 GHz以上的整个频谱,并提供出色的性能,支持通信、测试和测量仪器、工业、航空航天和防务等应用实现多种RF和微波设计。


参考文献


1M. S. Gupta。“RF是什么?”IEEE微波杂志,第2卷第4期,2001年12月。

2 David M. Pozar。 微波工程,第4版,Wiley,2011年。


作者简介


Anton Patyuchenko于2007年获得慕尼黑技术大学微波工程硕士学位。毕业之后,Anton曾在德国航空航天中心(DLR)担任科学家。他于2015年加入ADI公司担任现场应用工程师,目前为ADI公司战略与重点客户提供现场应用支持,主要负责RF应用。联系方式:anton.patyuchenko@analog.com。


关键字:RF  信号链  ADI 引用地址:解密RF信号链:特性和性能指标

上一篇:高速放大器测试需要足够多的数学知识来正确使用巴伦
下一篇:ADI公司的RadioVerse® SoC帮助提高5G射频的效率和性能

推荐阅读最新更新时间:2024-11-17 02:40

小型无线射频识别系统的设计
  当今各种智能化控制系统离不开数据信息的传输。其中,无线数据传输是区别于传统有线传输的新型传输方式,系统不需要传输线缆且成本低廉。为单片机匹配相应的无线通信接口电路,即可实现单片机之间或单片机与微机之间的无线数据传输。目前常用的无线通信接口电路,是以无线收发芯片为核心的电路。当数据传输时,在软件设计中采取必要的抗干扰措施和识别措施,可以有效地避免干扰,达到满意的通信效果。文中以89c2051单片机为基础,进行无线通信以识别非接触式无线识别装置,其应用可以嵌入到电业管理或燃气收费等系统中,也可作为一个独立读卡器对IC卡进行操作,配合不同软件可以应用于不同行业。   1 系统的工作原理   本设计以单片机作为阅读器和应答器的核心
[单片机]
小型无线<font color='red'>射频</font>识别系统的设计
ADI公司推进气候战略,承诺到2050年实现净零排放
ADI加入科学碳目标倡议、承诺到2030年实现碳中和、并加入联合国全球契约组织 中国,北京——2021年4月21日——Analog Devices, Inc. 宣布推进公司气候战略,承诺到2030年实现碳中和,到2050年实现净零排放。作为实现公司净零排放发展规划的一部分,ADI加入了联合国“企业雄心助力1.5°C限温目标行动”(Business Ambition for 1.5°C),并承诺设定符合科学碳目标倡议(SBTi)的减排目标。 ADI公司总裁兼首席执行官Vincent Roche表示:“气候变化是人类社会面临的最大威胁之一,这十年将是我们能否成功扭转局面的关键。将气候变暖控制在1.5°C以内需要全球共同努
[工业控制]
<font color='red'>ADI</font>公司推进气候战略,承诺到2050年实现净零排放
如何利用间接电流模式仪表放大器放大具有大直流偏移的交流信号?
如何利用间接电流模式仪表放大器放大具有大直流偏移的交流信号? 问题: 如何支持存在大差分偏移电压的应用而不需要增加增益级? 答案: 这可以通过在一级中利用微功耗轨到轨间接电流模式仪表放大器设计一个交流耦合和增益解决方案来实现。本文将概述这种设计的优势,并提供分步设计指南。 简介 在电磁流量计和生物电测量等应用中,小差分信号与大得多的差分偏移串联。这些偏移通常会限制电路在前端设计中可以获得的增益,进而影响整体动态范围。当使用较低电源电压时,例如在电池供电的信号链中,增益限制更具挑战性。解决这个大差分偏移问题的一种方案是使用交流耦合测量信号链。典型的交流耦合信号链包括一个低增益仪表放大器,其后是一个高
[模拟电子]
如何利用间接电流模式仪表放大器放大具有大直流偏移的交流信号?
ADI公司和Keysight Technologies强强联手 共推相控阵技术加速部署
中国,北京–2022年10月17日–Analog Devices, Inc (Nasdaq: ADI)和Keysight Technologies, Inc. 宣布合作,共同加速相控阵技术的推广与部署。 相控阵技术能够简化与创建卫星通信、雷达和相控阵系统相关的开发工作,是实现无处不在的连接和泛在检测的关键。 ADI公司的相控阵平台系列提供了一套完整解决方案 ,可以利用Keysight的相控阵测试解决方案进行测试和校准,从而帮助客户加快波束成形解决方案的开发速度。此次合作整合了双方生态系统的整体实力,旨在打造集设计、测试和校准的全方位解决方案。其中的相控阵天线亦是推动实现新一代无线通信应用以及信号智能和地球观测应用的关
[模拟电子]
<font color='red'>ADI</font>公司和Keysight Technologies强强联手 共推相控阵技术加速部署
TI推出两款新型射频采样收发器,占用空间更小
TI收发器可简化国防、测试和测量应用的设计,并实现业内领先的频率范围和占用空间 德州仪器公司(TI)近日发布了两款新型射频采样收发器。这两款收发器首次在单芯片上集成了四个模数转换器 (ADC) 和四个数模转换器 (DAC) 。四通道AFE7444和双通道AFE7422收发器拥有业内领先的频率范围和瞬时带宽,而且与离散型解决方案相比,占用空间减少75%,可帮助工程师更轻松地在雷达、软件无线电和无线5G应用中部署多天线、直接射频采样。 利用高带宽简化频率规划 业内领先的最高瞬时带宽(IBW):AFE7444和AFE7422的最高瞬时带宽高于业内的同类射频采样收发器,可帮助工程师实现最高6倍的数据通量。AFE7444的每个
[物联网]
基于SoC发射器的简化RF遥控器设计
遥控器有许多不同的尺寸和形状,而且选择的无线技术也不尽相同。作为产品配件,其广泛用于消费类电子领域,如电视机、电子游戏机、音响系统、灯光控制以及家居自动化(包括车库门/房门启动器、空调设备、风扇和汽车RKE系统)。最常见的遥控器使用红外(IR)技术,这主要是因为红外元件成本相对较低,但这些基于IR的控制器有许多缺陷,包括需要在视角范围内、操作角度限制、传输距离短、与IR LED相关的反射和高电流消耗等,这些缺陷大大缩短了电池寿命。RF遥控器解决了这些问题,并且由于可带给用户更好的使用体验,产品也日益丰富。此外,技术改进正在使得RF-IR元件之间的价格差越来越小。   RF遥控器有其共有的特性,如图1结构简图所示。RF遥控器的基
[模拟电子]
5G时代,长电科技如何做好封装这门生意
5G将至,各大厂商正在冲刺5G 芯片的研发工作,除了引发各式各样的5G测试需求之外,芯片的封装技术也将成为封测大厂角力的新战场,在紧张备战的同时,封装技术也在更新迭代。谁能瓜分全球封测市场的大蛋糕?随着5G、IoT、AI、可穿戴设备等新兴领域加速前进,SiP封装又将迎来下一个风口。 近日,在中国系统级封装大会上,来自江苏长电科技股份有限公司(以下简称“长电科技”)技术总监刘明亮、系统级封装大会技术主席罗德威以及厦门韦尔通科技业务发展经理郎震京,分享了5G移动终端和新基建下的封装技术挑战和发展。 刘明亮指出,集成电路在5G和人工智能领域发挥着基础支撑作用。同时新基建加速5G和人工智能产业的发展,为集成电路带来更为广阔的市场空
[半导体设计/制造]
5G时代,长电科技如何做好封装这门生意
针对新兴RF标准进行实时频谱分析
  用多种RF 通信协议的无线 combo 设备正日益流行,如无线局域网 (WLAN) 、蓝牙和 3G 蜂窝标准,其在无线市场中增强了连接能力和性能。 Combo 设备给无线工程师带来了一系列极具挑战性的信号测量问题,不管是检验参考电路还是处理下一代调制格式。使用传统信号分析仪可能很难、甚至不可能诊断分组信号瞬变、异步分组碰撞和各种自我干扰模式。本文说明了实时频谱分析仪 (RTSA) 怎样提供独特可靠的解决方案,来解决这些信号测量难题。   WLAN combo 设备面临着一系列独特的问题,这似乎已经成为未来通信发展方向的核心内容。低成本高速度逻辑设备和错块检测和校正方案的出现,已经促使通信行业通过间歇性 RF 信号突发传输分
[测试测量]
小广播
最新模拟电子文章
换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved