在许多电子系统中,经常需要用到频率和幅度可调的正弦波信号作为基准或载波信号。正弦渡信号主要通过模拟电路或DDS(Direct Digital Synthesis)等两种方式产生.相对于模拟电路,DDS具有相位连续、频率分辨率高、转换速度快、信号稳定等诸多优点,因此,DDS存雷达、通信、测试、仪表等领域得到了广泛的应用。
1 系统组成
该系统的核心部件是AD7008,AD7008是ADI公司推出的高集成度DDS频率台成器。首先单片机将频率控制字发送给AD7008,在AD7008的输出端口就可以得到所需的正弦信号,为了使输出信号的频率更为稳定,将输出信号通过由MAX262构成的中心频率可调带通滤波器进行滤波处理.MAX262的中心频率通过单片机按照AD7008的输出频率进行设置。DAC0832的作用是控制输出信号的幅度。系统组成框图如图1所示。
2 主要硬件电路
系统的主要硬件电路如图2所示。其主要由AD7008与单片机之间的接口、程控滤波器、幅度控制等三部分组成。现分别对其加以介绍。
1.2.1 A07008与单片机之间的接口
AD7008可以和外围MPU构成并行或串行两种接口方式,其中并行接口又可以分为8位和16位两种。由于系统采用8位单片机,考虑到响应速度,采用8位并行接口方式。当单片机将数据送到PO口时.如果AD7008的WR引脚(与单片机的P1.0相连)出现负脉冲,则PO口的数据被送入AD7008的并行寄存器。如果AD7008的LOAD引脚(与单片机的Pl.1相连)出现正脉冲,则根据TC3~TC0(与单片机的PO.3~PO.0相连)的逻辑关系,AD7008并行寄存器内的数据将会被送到片内命令寄存器、频率寄存器0、频率寄存器1或相位寄存器中。由此来对AD7008所产生的正弦信号进行控制。AD7008的输出引脚lOUT和IOUT通过一电阻接地,将输出电流转换成电压,再通过一运算放大器组成的减法电路后产生正弦波。
2.2 程控滤波器的设计
为了提高输出信号的质量,必须对由AD7008所产生的正弦信号进行滤波处理。由于该信号发生器用在电测仪表中,其对正弦信号的频率要求是40Hz~5kHz。笔者选用工作频率为1Hz~140kHz的MAX262来构成一个中心频率可程控的带通滤波器。MAX262有三个可程控参数:中心频率、Q值和工作模式。所有程控参数都通过数据引脚DO和Dl输入。地址引脚A3~A0控制输入数据进入不同的寄存器。当AD7008输出信号的频率确定后,就可以设定MAX262的中心频率和Q值。这样就构成一可程控的带通滤波器对AD7008的输出信号进行滤波处理。
2.3 幅度控制
正弦信号的幅度控制是通过D/A转换器DAC0832来实现的。经过滤波处理的正弦信号接在DAC0832的参考电压引脚VREF上。DAC0832的八位数据输入引脚与单片机的P0口相连,由片选信号CS(与单片机的PI.2相连)来决定输入数据是否选通。由图2可知,DAC0832工作在单缓冲寄存器方式,即当CS为低电平时,DO~D7数据线送来的数据直接进行D/A转换。
根据D/A转换的工作原理有:
将代入,则有:
第一级运算放大器将电流转化为电压输出,则有:
将表达式代入,得
第二级运算放大器起反向放大作用,它的输入和输出电压之间的关系为:
将表达式代入,最后得到如下关系:
由于,所以输入电压通过该电路后,其输出受到由数字控制的衰减。R改变DO~D7的值时,输出电压也随之变化,即实现了对正弦渡信号的幅度控制。
3 软件设计
单片机上电复位后,先对A D 7 0 0 8和MAX262进行初始化设置。然后开始检测外围输入单元。当有频率设置输入时.则将频率控制字送入AD7008,然后根据信号频率设置MAX262的中心频和Q值。当有幅度设置输入时,则将幅度控制字送DAC0832。其程序流程框图如图3所示。
结 语
该信号发生器已经成功运用在某电测系统中,使用效果良好。由于受该系统的实际需求所限,还没有完全发挥DDS技术的全部优势。DDS还可以应用于跳频通信、数字调制等其它领域。尤其是那些要求频率精度高、转换时间短的应用场合,采用DDS技术相对其它频率合成技术来说具有无法比拟的优势。由于DDS自身的优点,在性能要求较高的频率合成领域将会得到极为广泛的应用。
上一篇:EFT/ESD问题的测量和定位
下一篇:用AD7008构成可程控正弦波信号发生器
推荐阅读最新更新时间:2023-10-12 20:11
- 英飞凌推出OptiMOS™ Linear FET 2 MOSFET, 赋能先进的热插拔技术和电池保护功能
- USB Type-C® 和 USB Power Delivery:专为扩展功率范围和电池供电型系统而设计
- ROHM开发出适合高分辨率音源播放的MUS-IC™系列第2代音频DAC芯片
- ADALM2000实验:变压器耦合放大器
- 高信噪比MEMS麦克风驱动人工智能交互
- 在发送信号链设计中使用差分转单端射频放大器的优势
- 安森美CEO亮相慕尼黑Electronica展,推出Treo平台
- 安森美推出业界领先的模拟和混合信号平台
- 贸泽开售用于快速开发精密数据采集系统的 Analog Devices ADAQ7767-1 μModule DAQ解决方案
- PC产业驶入创新超车道,英特尔蓉城撬动AI新引擎
- 与产业聚力共赢,英特尔举行新质生产力技术生态大会
- “新”享5G-A万兆网络前沿体验 高通携手产业伙伴亮相第二届链博会
- 英飞凌推出符合ASIL-D标准的新型汽车制动系统和电动助力转向系统三相栅极驱动器 IC
- 南芯科技推出80V升降压转换器,持续深耕工业储能市场
- 法雷奥与罗姆联合开发新一代功率电子领域
- 贸泽电子开售能为电动汽车牵引逆变器提供可扩展性能的 英飞凌HybridPACK Drive G2模块
- 德州仪器新型 MCU 可实现边缘 AI 和先进的实时控制, 提高系统效率、安全性和可持续性
- 瑞萨推出高性能四核应用处理器, 增强工业以太网与多轴电机控制解决方案阵容
- 研华全新模块化电脑SOM-6833助力5G路测设备升级