常见的电子系统冷却方法有三种:散热器、风扇和珀尔帖模块。以上每种器件都可单独使用,但如果组合使用时,可以达到更优的散热效果。
散热器
有许多形状和尺寸选择。散热器用来提高对流冷却效果,具体方法是减少其所连接的设备和冷却介质(通常是空气)之间的热阻抗。散热器通过增加对流表面积来实现这一点,而且采用热阻抗低于典型半导体的材料制成。散热器成本很低,几乎从不发生故障或磨损,但往往会增加其所冷却的电子系统的体积。作为一种无源组件,散热器通常与风扇组合使用,以便更有效地将消散的热能从系统中移走。
风扇或风机
在散热器上形成稳定的新鲜冷空气流,以保持散热器和冷却空气之间的温差,从而确保持续有效的热传递。
风扇和风机
有各种形状和尺寸,并提供各种不同的功率选择。产生气流的能力就是其关键的技术规格,通常以立方英尺/分钟 (CFM) 为单位。有些风扇和风机带有控制器,因此可以作为基于反馈的控制系统的一部分用来调节转速,以符合当前的冷却需求。风扇有助于改善冷却,但设计时要考虑风扇需要电源,有时还需要控制电路。与散热器相比,风扇也可能产生噪音,包含活动部件,因此更容易发生故障。
珀尔帖器件
是利用珀尔帖效应将热量从模块的一侧传递到另一侧的半导体元件。为了移动热量,必须向珀尔帖设备提供能量,这实际上增加了系统的热量,所以它们最好与散热器和风扇一起使用。不过,珀尔帖模块可以实现精确的温度调节,可以将设备冷却到环境温度以下。像散热器一样,帕尔贴器件中没有活动部件,所以这种器件本身灵活、坚固,但同样可能需要与风扇、散热器和控制电路一起使用,从而增加成本和复杂性。由于这些原因,珀尔帖模块通常只用于最苛刻的应用,例如从元器件密集的电子系统中心吸收热能。
无论最终的设计要求是什么,都可采用公认的方法为电子系统设计有效的冷却解决方案。为了方便说明工程师如何创建完整的热管理解决方案,本文采用了一个假设性问题和解决方案:
在本例中,我们将使用一个稳定状态下可产生 3.3 W 热量的 10 mm ×15 mm 封装器件。该器件的工作环境温度为 50℃,理想工作温度为 40℃。该系统任何部分的温度都不应超过 100℃。
图 4 :CP2088-219 规格书中珀尔帖模块的性能图(图片来源:CUI Devices
)
这些技术规格意味着需要使用珀尔帖模块将设备温度降至环境温度以下。CUI Devices 提供
CP2088-219
器件,这是一种微型珀尔帖模块,可以消除 3.3 W 的热能并为设备降温,使其温度比环境温度低 10℃。珀尔帖模块使用
SF600G
固定到设备上,这是一种热界面材料 (TIM),可以减少设备和冷却器之间的热阻抗。CP2088-219 的规格书(图 4)显示,珀尔帖模块在 2.5V 电压下需要 1.2 A 电流,这意味着该模块运行时会给系统增加 3W 的热能。
为了从珀尔帖模块中移除总共 6.3 W 的热能,在模块另一侧安装了散热器(
HSS-B20-NP-12
),同样使用 SF600G TIM 作为热界面。TIM 的面积为 8.8 mm × 8.8 mm,热阻略低于 1.08℃/W。
散热器的热阻为 3.47°C/W,假设该散热器上的气流为 200 直线英尺每分钟 (LFM)。
这将使得 TIM 和散热器组合的总热阻达到 4.55℃/W。
该器件通过 TIM 将需要冷却的设备与珀尔帖模块连接。珀尔帖模块的上表面通过另一种 TIM 与散热器相连,整个组件都置于 200 LFM 的 50℃ 空气中。
图
5
:使用珀尔帖器件、两层
TIM
和风扇的热管理解决方案
利用这些数据,就可以计算出设备的稳态温度。珀尔帖模块将保持其冷端为 40℃——但代价是给组件增加 3.3 W 的热量。散热器必须将 6.3 W 的热量散发到 50℃ 的气流环境中,珀尔帖模块和环境空气之间的总热阻为 4.55℃/W。用 6.3 W 乘以 4.55°C/W,就能确定比环境温度高多少;在这种情况下,温度为 28.67°C 或者总温度为78.67°C。这远远低于 100°C 的要求,从而构成了满足系统需求的热管理解决方案。