腾讯 AI Lab 主任张潼:解密实验室的研究和应用方向 | CITE 2017
用 10 周时间,让你从 TensorFlow 基础入门,到搭建 CNN、自编码、RNN、GAN 等模型,并最终掌握开发的实战技能。4 月线上开课,www.mooc.ai 现已开放预约。
雷锋网按:4月9日,第五届中国电子信息博览会(CITE 2017)在深圳开幕。会中科大讯飞承办了2017人工智能产业发展高峰论坛。腾讯AI实验室主任张潼亮相峰会,并分享了三项内容:
如何构建AI生态?
AI时代的关键要素
腾讯AI Lab的研究和应用方向
以下是张潼亮的演讲实录,雷锋网做了不改变原意的编辑:
如何构建AI生态?
怎样构建AI生态呢?在AI Lab看来,有三个非常重要的因素。
第一个因素是我们希望能够建立一个纵向的政产学研用合作机制。如果进行顺利,这能够加快学校研究的产业化落地,为产品服务。腾讯 AI lab是企业里的研究机构,它有一个承上启下的作用,包括与产品的结合,与学校和政府的结合。比如说我们在发改委的帮助下,和清华大学建立了一个AI基础建设公共平台。
在学术方面,我们也和很多大学,如清华、哈工大等联合发起了一系列的联合实验室。并且还有一些联合培养计划,使他们的研究可以在成品的产品中得到应用,让他们的研究更有针对性,能够触达用户。
另外,我们也基于腾讯自己的应用场景定义了一些比较适合的研究方向,包括在游戏、内容、社交等等一系列优势领域做深入的AI研究,让研究快速落地。我们希望能够打通上下游,形成一个可发展的闭环。
第二点是开放心态。腾讯是龙头企业,人工智能有很多积累,我们希望开放腾讯的技术或者场景,为大家服务。AI lab 将来会有一些行动,包括刚才提到的和清华大学联合组织的开放平台,还可能会在腾讯云落地,为企业服务,降低AI的成本。
最后就是法律法规和社会伦理的保障性。例如政府引导法律的制定,联合国去年发布了机器人伦理的初步稿案,此外,其余国家也在积极推出AI相关政策。也有些美国公司在进行关于AI伦理研究和发展规划。这些都值得借鉴。去年腾讯研究院成立了一个专门小组,研究AI相关的国家战略、法律、伦理,并且与中国社科院、国外高校合作了一系列前沿话题,未来也会逐渐对外分享。
AI时代的四大关键要素
我们只要抓住这四点因素就可以进一步推动国内人工智能的发展。
第一点是丰富的业务场景。人工智能一定还是需要通过应用来服务用户,它能触及用户,能够产生商业价值,技术才可以持续积累应用。
第二是海量的大数据,一方面靠业务场景积累,另一方面以别的方式产生。大数据对于提升人工智能也是必不可少的。中国在数据上有优势,人多、场景多、从而产生数据。互联网公司也有优势,围绕自身业务场景,就能创造很多数据。所以业务场景,以及它所带来的数据,都是各个企业的核心竞争力。
第三,强大的计算资源也是因素之一。这点国内互联网公司并不缺,有很多集群,知道如何搭建硬件架构。互联网企业通过类似云服务提供计算能力给社会,一些传统企业或者中小企业也会拥有这样的能力。
最后一点是优秀的人才。中国的应用型人才是非常丰富的,而我们现在不仅关心应用型人才,还关心研究型人才。研究型人才的储备与美国相比还有距离,我们通过引进国外人才或者自己培养来增加储备。两类人才相互配合,才能使得中国人工智能在应用层面、研究层面保持领先地位。
解密 AI Lab 的三大研究方向
AI Lab很看重底层和基础性技术研究。算法能力依靠机器学习,在机器学习之上,再看机器如何去看,即计算机视觉;机器如何去听,即语音识别;机器如何理解,就是自然语言处理,包括文本和交互。基础研究往上到应用到业务层面,才能直接对公司产生价值了。
因此AI Lab也非常重视应用,围绕一些研究课题进行,而且特别是针对于程序的一些课题会做深入研究。主要提高三方面能力:
决策能力。其中涉及强化学习,这在腾讯游戏场景能得到很好的落地。
创造力。例如跟创造力有关的生成模型,在内容的生成领域会得到很好的应用
理解能力。其中涉及自然语言认知,这在社交领域、人机对话可以得到应用。
AI Lab 的四大应用方向
在腾讯的业务场景上,AI Lab提出了四大应用方向:
第一是游戏AI,因为腾讯有游戏场景,它能够积累决策系统、增强学习等一系列基础技术。而这些基础技术的积累,除了能在游戏场景中发挥作用,还能在其余例如无人车、机器人、自然语言处理上得到应用。
第二是社交AI,腾讯是个社交公司,自然也会关注对自然语言的理解、语音识别、智能家居的交互;例如语音识别和机器翻译,从之前基于统计的机器翻译转到了现在所谓基于神经网络的机器翻译。另外还有智能助手、聊天机器人、人机对话的开发。
第三是内容AI,一块是对内容的理解,提供更好的个性化推荐、内容搜索;还有一块是内容生成,就是怎么去帮助生成更好、更优质的内容。例如搜索场景图片。腾讯有很多图像和视频,必然要有视频推荐,怎么去理解它?如何给图像、或视频打标签?如何将内容去和用户兴趣结合等问题。我们都会围绕业务场景来进行深化,把技术积累下来。
第四是平台工具型AI,基于前三块的技术积累,通过搭建工具,或利用云平台提供开放性的解决方案,如基于图像的人脸识别、语音识别、自然语言处理中的舆情分析处理,及深度学习平台等能力。这也印证了之前所言的开放协作心态,打造一个生态系统。
最后谈谈两点愿景。首先,AI Lab会持续注重研究和合作交流,因为我们是企业单位,所以立足点是腾讯的业务,利用AI来优化产品和服务。其次,我们会保持开放心态,把研究结果分享给社会,形成AI生态,make AI everywhere.
雷锋网将会持续报道展会精彩内容,敬请关注!
点击关键词可查看相关历史文章 ● ● ● 近期热门 谷歌工程师亲述,TPU 为何会比 CPU、GPU 快 30 倍? 苹果对 Imagination 捉放曹,中方企业要不要买买买? 最新课程 |