一种远程无钥匙系统(RKE)的方案设计

发布者:温暖阳光最新更新时间:2010-09-20 关键字:远程无钥匙系统  RKE  HCS300  设计 手机看文章 扫描二维码
随时随地手机看文章

  当今70%的汽车商选用RKE(Remote Keyless Entry,远程无钥匙进入)系统,或将其作为一个标准。RKE系统主要由按键加密发送器和车内内置接收器组成,结构框图如图1所示。它们主要用在汽车门 控制、无线传感器、汽车无线胎压监测TPMS(Tire Pressure Monitor System)等方面,使用的频率是315 MHz(美国和日本地区)、433.92 Hz(欧洲地区)。欧洲同时开放了868 MHz频率来适应RKE系统的增长需求。


图1 RKE系统结构框图

  RKE系统的用户可以通过钥匙链发送数据来打开和关闭汽车门。图1中,用户可以按下按键开关来发起与接收机的通信,通过一串64~128位长度 的数据流进行发送器和接收器的会话。该数据流包括前引导码、命令码和一串加密滚动码。通信速率通常选用2~20 kHz之间,采用ASK调制方式,主要为了延长发送部分钥匙链中电池的使用寿命。

1 系统设计

  1.1 功率设计

  设计中主要考虑的是低电流消耗情况下的高可靠性、系统的成本以及发送器和接收器的寿命。对于发送器,电池寿命在3~5年是可以满足要求的。电池 寿命对于接收器件也很重要,因为接收器件必须总是在线侦听发送端数据,典型的电流要求不超过1 mA。一个设计方法是,在一定时间内,接收端保证能够检测到有效的发送信号;为了最大限度地节约电量,接收器在其他的时间睡眠。

  1.2 安全性设计

  系统的安全性也是一项主要考虑的因素。通过采用Microchip公司专为RKE系统设计的使用DES算法的安全密钥芯片HCS300来实现系统数据的安全加密,防止发送的数据被恶意盗取拷贝;同时在接收端使用MC9RS08KA2进行解密和继电器控制。

  HCS300的操作电压为2.0~6.3 V,是一个可编程28位串行码、64位加密键值、66位发送长度、32位跳频码、4位按键码、2位状态码,具有键值读保护措施的芯片。

  DES编码、解码图如图2和图3所示。


图2 DES编码图


图3 DES解码图

  16位的同步计算器,在每次发送代码后都要发生改变。它随按键的次数而增加。根据DES算法加密,在每次发送的代码中,由于同步计数器的变化而 使得每次发送的代码有大于50%的部分不一样。图2说明在编码过程中如何使用HCS300的内部可编程EEPROM,一旦编码器检测有按键按下,它就立即 读键值,同时刷新同步计数器。按键和同步计数器经过加密算法处理,输出数据是32位的加密信息。携带按键信息的32位代码和串行码组成了整个发送码,将被 接收部分接收到。

  解码部分必须先学习发送端的数据码,学习包括计算发送端的键值、解密32位的加密信息和可编程阵列中的串行码、同步计数器以及键值。在正常的操 作模式中,每次接收到的有效格式的信息都被计算。串行码用于表示发送码是否被学习过。如果发送码被学习过,那么它的信息被解密和同步计数器值校验,最后接 收系统执行按键操作请求。图3表示了接收部分接收到的信息和它的可编程EEPROM(设计中使用AT24C02)中存储信息的关系。

  1.3 射频收发器件和微处理器特性

  为了保证系统能够在较低电流消耗的情况下,有较高的发射功率和接收灵敏度,系统选用了Maxim公司的MAX1473接收芯片和MAX7044发射芯片。

  MAX7044发射芯片工作电压为+2.1~6.0 V,7.7 mA的低工作电流,250 μs的启动时间。通信速率能达到100 kbps,小封装3 mm×3 mm,8引脚SOT23封装。它消除了基于SAW发送器设计的问题;采用晶体结构,提供了更大的调制深度和快速的频率响应机制;降低了温度的影响,温度范 围可达-40~125 ℃。

  MAX1473接收芯片采用3.3 V锂电池供电,250 μs启动时间,小于2.5 μA的待机模式工作电流,-114 dBm的灵敏度;采用TSSOP 28引脚封装设计。

  MC9RS08KA2作为Freescale公司新推出的一款集成多个功能的高性价比MCU,具有键盘中断和高达20 MHz的内部时钟,以及8位模计数器,2 KB Flash空间,63字节RAM;同时有等待和3种停止模式,满足系统的超低功耗设计(设计中电流小于1 μA),以及简易的6引脚BDM编程调试接口,便于系统的实时升级。设计中采用6引脚DFN精密小引脚封装,满足系统的小体积要求。

  1.4 硬件设计图

  按键DES硬件加密部分电路如图4所示。发送部分射频前端电路如图5所示。

  接收部分射频前端电路如图6所示,元器件参数如表1所列。接收部分微处理器控制电路如图7所示。


图4 按键DES硬件加密部分电路


图5 发送部分射频前端电路

[page]


图6 接收部分射频前端电路

表1 典型电路的元器件参数



图7 接收部分微处理器控制电路

  1.5 软件设计

  编码加密操作流程如图8所示。


图8 编码加密操作流程

  如果有按键按下,HCS300将被唤醒,同时通过10 ms延时消抖。同步计数器、描述信息、按键信息被编码形成跳频码。每次发送跳频码都会不一样,即便是同一个按键按下,在64K次按键过程中发送的跳频码也 不会发生重复,因此在较长的时间内,按键密钥信息不会被盗取。如果在发送的过程中检测到新的按键按下,那么将会立即复位,而且当前的代码将不会继续执行; 离开按键后,对代码字是没有影响的,除非没有按键继续保持按下状态,在任何情况下传输代码都会完成,同时系统下电。

  接收部分解码解密流程如图9所示。


图9 解码解密流程

  上电后,MC9RS08KA2开始判断系统是否有I/O中断产生。如果没有,则系统进入低功耗睡眠模式(停止模式3);如果有I/O中断产生, 那么进入中断,唤醒MCU,同时进行软件DES算法解密。如果解密不成功,则继续接收数据;如果解密成功,则执行相应的继电器操作(如开/关门等),然后 系统继续进入睡眠状态。

2 结论

  通过结合多家外围器件和微处理器件,利用Microchip KEELOQ芯片的安全性,Maxim的射频芯片的可靠性、稳定性和Freescale微处理器的高集成度及性价比,整合各家优势,提高了系统的整体性能。通过实际运行,系统达到了预先设计的要求。本次设计只使用了2个按键,根据需要可以外扩功能按键达到15个,用于实现不同的控制信息要求。设计人员可 以根据自行需要进行相应的扩展。

关键字:远程无钥匙系统  RKE  HCS300  设计 引用地址:一种远程无钥匙系统(RKE)的方案设计

上一篇:未来5年中国车用LED市场投资价值分析
下一篇:Spansion携手Freescale开发新一代汽车仪表

推荐阅读最新更新时间:2024-12-18 18:59

复智能光电旋钮的设计
    摘要: 本文介绍一种智能光电旋钮的硬件设计和软件设计。这种光电旋钮用于仪器的控制面板,操作灵活、方便,可靠性强,具有较强的使用和推广价值。     关键词: 光电旋钮;单片机;控制面板 引言     目前,在设计仪器的控制面板时,主要采用各种按键,通过检测按键是否被按下产生控制信号。但是,在一些需要连续产生控制信号的场合,使用按键可能带来操作上的不便。而且,长期高频率使用的按键极易损坏。如果使用光电旋钮,根据其旋转速率和旋转方向产生控制信号,就能提高使用的灵活性和可靠性。市场上的此类产品很少,且价格昂贵。经过多次试验,笔者成功地设计出采用单片机作为控制核心的智能光电旋钮。     智
[传感技术]
基于MSP430单片机实现六自由度机械手模块的设计
当代科学技术发展的特点之一就是机械技术,电子技术和信息技术的结合,机器人就是这种结合的产物之一。现代机器人都是由机械发展而来。与传统的机器的区别在于,机器人有计算机控制系统,因而有一定的智能,人类可以编制动作程序,使它们完成各种不同的动作。六自由度自动寻迹搬运机器人就是其中一种,这种搬运机器人不但能够代替人的某些功能,有时还能超过人的体力能力,可以24小时甚至更长时间连续重复运转,还可以承受各种恶劣环境,因此,搬运机器人是人体局部功能的延长和发展。 本设计主要应用单片机MSP430作为控制核心,直流电机、热释电型红外传感器等相结合的系统。它充分发挥了单片机的性能,其优点硬件电路简单,软件功能完善,控制系统可靠,性价比较高等特点
[单片机]
基于MSP430单片机实现六自由度机械手模块的<font color='red'>设计</font>
基于NCP1337准谐振电源的分析和设计
随着全球业界对电源效率的要求越来越高,包括ATX电源、消费类电子产品等在内的电源需要更高的节能要求。传统的电源设计都工作在固定频率模式下,从而使得功率管在高压接通,关断过程中功率管上消耗的瞬时功率较大,同时还会引起一定的电磁干扰。而准谐振技术和软跳周期技术正好能解决这个问题,安森美公司的NCPl337控制器就是用于准谐振式开关电源的优秀代表。 1 准谐振原理 准谐振变换的原理是降低拓扑中电源开关的导通损耗,一般的反激式开关电源其MOSFET开通/关断时间固定,工作在固定频率。如图1所示,我们可以看到在磁复位的过程中,由于变压器电感和功率管上寄生电容存在,使得开关管上的压降存在振荡。但是可以发现电压振荡曲线中的A点,就是MOSFE
[电源管理]
基于NCP1337准谐振电源的分析和<font color='red'>设计</font>
TLC5620I与TMS320F2812的接口设计
       1 引言   近年来,数字信号处理器(DSP)的应用越来越广泛,其中TMS320F2812作为目前数字控制领域中性能较高的DSP芯片,被广泛应用于电机控制、工业自动化、家用电器和消费电子等领域。由于TMS320F2812本身不具有D/A转换模块,因此在很多需要模拟量输出的控制场合受到限制。所以D/A转换芯片如何与TMS320F2812进行接口,成为数字信号处理系统需要解决的一个重要问题。这里介绍了四路8位电压输出数字一模拟转换器TLC5620I,并给出TLC5620I与TMS320F2812串口接口的软、硬件设计实现方法。    2 TMS320F2812的SPI工作原理   TMS320F2812的SP
[电源管理]
TLC5620I与TMS320F2812的接口<font color='red'>设计</font>
华为Mate40 Pro评测:星环设计颜值高,极智交互更加贴心
市调机构群智咨询的最新报告显示,2020年第3季度全球智能手机的出货量约为3.4亿部,同比下降约3.4%。 该报告并指出,2020年前三季度全球智能手机终端市场的出货规模约为8.7亿,同比下降11%。预计2020年全球智能手机终端市场的出货量为12.4亿,同比下降约8%。 在传感器出货方面,2020年第3季度全球手机摄像头传感器出货量为17亿颗,其中智能手机摄像头传感器出货量约为15.9亿颗,创历史新高,同比增长约19%。 值得一提的是,2020年第3季度,本土品牌格科微手机摄像头传感器(含功能机)出货量约为4.9亿颗,同比增加约37%。该报告分析称,从格科微的产品结构来看,其主力芯片2/5M在目前中低端机型必备两颗,属于市场
[手机便携]
华为Mate40 Pro评测:星环<font color='red'>设计</font>颜值高,极智交互更加贴心
优化机顶盒音视频接口设计
随着数字高清电视的不断普及,从DVB-C、DVB-S到DVB-T的机顶盒已不断普及到家庭。家庭拥有的机顶盒的功能,也从单一的信号接收和播放功能,到网络连接(IPTV),再到家庭智能中心。电视机越来越多地承担主要的显示功能,机顶盒的海量存储和点播功能越来越普遍。本文将就视频和音频接口设计上的挑战和优化,向读者推荐系列的优化解决方案,从而达到降低设计周期,降低系统成本的最终目的。 视频链路设计的优化 传统的主芯片的模拟输出信号有CVBS(复合视频)或YPbPr(分量视频)。传统设计中,通常在主芯片的DAC输出端会加入电感电容组成的 型滤波器。滤波器的主要目的有两种:第一是消除在视频编码器采样过程中,引入的大于Nyquist频率的噪声;
[嵌入式]
基于51单片机的数控直流稳压电源的设计与实现
1 引言 直流稳压电源是电子技术常用的设备之一,广泛的应用于教学、科研等领域。传统的多 功能直流稳压电源功能简单、难控制、可靠性低、干扰大、精度低且体积大、复杂度高。普 通直流稳压电源品种很多.但均存在以下问题:输出电压是通过粗调(波段开关)及细调(电 位器)来调节。这样,当输出电压需要精确输出,或需要在一个小范围内改变时(如 1.02~1.03V),困难就较大。另外,随着使用时间的增加,波段开关及电位器难免接触不良, 对输出会有影响。常常通过硬件对过载进行限流或截流型保护,电路构成复杂,稳压精度也 不高。本文设计了一种以单片机为核心的智能化高精度简易直流电源,克服了传统直流电压 源的缺点,具有很高的应用价值。 2 系统硬件设
[单片机]
基于51单片机的数控直流稳压电源的<font color='red'>设计</font>与实现
嵌入式环境下分层的串行帧通信的设计与实现
嵌入式系统之间的通信通常有两种方式:并行通信和串行通信。并行方式传输数据速度快,但占用的通信线多,传输数据的可靠性随距离的增加而下降,只适用于近距离的数据传送。在远距离数据通信中,一般采用串行通信方式,它具有占用通信线少、成本低等优点。目前RS 232串口是PC机与通信工业中应用最广泛的一种串行接口,它应用于点对点通信模式,实际使用中多采用最简单的三线方式连接,即两端设备的串口只连接收、发、地三根线,即可实现简单的全双工通信。通信协议是两端设备数据交换的语言,是通信可靠性的保证,在保证功能的前提下,通信协议应该力求简洁。   1 系统通信需求   本系统主要完成野外环境下时间间隔测量和瞬态数据采集的功能,系统内各模块均选
[单片机]
嵌入式环境下分层的串行帧通信的<font color='red'>设计</font>与实现
小广播
最新汽车电子文章

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved