电动汽车无线充电技术明年走进市场

发布者:Delightful789最新更新时间:2011-08-12 来源: 科学时报关键字:磁耦合  HaloIPT  无线传输 手机看文章 扫描二维码
随时随地手机看文章

由东南大学研制的磁耦合谐振式无线输电系统

  电动汽车无线充电已是大势所趋,而新的无线充电技术则是未来电动车无线充电的关键。

  最近一些大型汽车制造企业已经与相关研究团队取得联系,目前正在讨论将技术推向产业的相关事宜。

  有关专家透露,最快明年无线充电技术就能走向市场。

  今年7月,工业和信息化部在一次会议上公布了我国新能源汽车发展的新进展:25个试点城市节能与新能源汽车总保有量超过1万辆,其中私人购买新能源汽车超过1000辆,建成充电站与换电站近100座,充电桩4500多个,示范运行总里程超过3.3亿公里。

  近年来,电动车在新能源汽车中的地位日益稳固,发展态势迅猛,到2015年我国纯电动车保有量将实现百万辆级。但与此同时,电动车大规模推广的问题也随之而来。

  磁耦合谐振式无线输电技术是一项刚刚兴起的技术,将有助于解决这些问题。

  东南大学电气工程学院院长黄学良向《科学时报》记者表示:“电动汽车无线充电已是大势所趋,而新的无线充电技术则是未来电动车无线充电的关键。”

“充电难”成发展瓶颈

  电池是电动车产业面临的重大问题。研究人员正在寻找一种容量更大、重量更轻、体积更小、循环寿命更长的电池。锂离子动力电池、磷酸铁锂电池、高铁电池等新型电池都进入了他们的视野。

  改良充电技术则是另一条有效的研究思路。目前,电动车在专用充电站通过两种方式进行充电。然而,研究表明,这两种充电方式都有着致命的弱点。

  普通充电多为交流充电,需要8到10小时充满。按照目前的状况,一个拥有10个车位的充电站每天可以为30辆汽车充电。然而,如果该地区电动车数量达到10万辆后,充电站则将占用大量的城市用地。

  完成一次快速充电只需要10到20分钟左右。但是,黄学良告诉记者,快速充电对城市电网的冲击非常大。数据显示,一次快速充电消耗的电能是一栋办公大楼用电负荷的5倍。

  正因为如此,尽管国家对私人购买新能源汽车进行大力度的财政补贴,我国新能源汽车的市场反应却不尽如人意。例如在宁波市,不仅拥有电动汽车的人寥寥无几,去年建成的60个电动汽车充电桩也几乎成了摆设。

  无线充电正是因为可以解决这些现实问题而被研究人员关注。

从10厘米到50厘米

  虽然这项技术在用于电动车充电上才刚刚兴起,但是,对于电磁之间的关系,科学家早已不陌生。

  早在19世纪60年代,尼古拉·特斯拉成功进行了无线输电。2005年,香港城市大学电子工程学系教授许树源成功研制出“无线电池充电平台”。尽管使用时仍然要将产品与充电器接触,但这已经距实现无线电力传输的梦想仅有一步之遥。

  2009年10月,日本奈良市针对充电式混合动力巴士进行了无线充电实验。供电线圈埋入充电台的混凝土中,汽车驶上充电台,将车载线圈对准供电线圈就能开始充电。

  但是,这项实验中使用的技术只能在10厘米之内进行充电,属于电磁近程充电的范畴。黄学良告诉记者,这种短距离的充电可能会对汽车底盘的高度有一定限制。

  而磁耦合谐振式无线充电技术则拉长了无线传输的距离。美国麻省理工学院马林·索尔贾希克的团队曾经在实验室中利用磁耦合谐振原理,用两米外的一个电源隔空点亮了一盏60瓦的灯泡。从此,磁耦合谐振式无线电力传输技术进入了电动车相关研究人员的视野。

  黄学良告诉记者,利用无线充电,只需要改装现有的停车场,就能够给电动车充电,不会占用过多的城市空间。由于不需要快速充电,也不会给电网施加过大的压力。“这项技术的应用突破了电动车推广中的电池难题。”黄学良说。

  记者了解到,目前东南大学的研究人员已经将无线传输的距离增加到50厘米左右。一名汽车制造技术人员对这项成果的评价很高,他说:“这是我所见到的国内唯一实现半米以上千瓦级无线功率传输的研究成果。”

明年将走进市场

  黄学良告诉记者,这项无线充电技术已经发展得较为成熟,同时,在成本上,无线充电设备为几千元,而有线充电桩则要上万。他认为,应当鼓励无线充电技术走向市场。

  “美国、欧洲和日本等地区已经开始着手电动车无线技术的商业化。”他说。

  去年11月,英国HaloIPT公司利用其最新研发的感应式电能传输技术,成功实现为电动汽车无线充电。电能接收垫安装于一台雪铁龙电动汽车车身下侧,通过无线充电系统对电池进行充电。

  该公司表示,这种感应式电能传输系统的另一个好处是,可以让汽车驾驶员根本无须担心忘记为电动汽车充电。据该公司透露,这种感应式电能传输技术将于2012年开始实现商业化推广应用。

  记者了解到,最近一些大型汽车制造企业已经与黄学良的团队取得联系,目前正在对将技术推向产业的相关事宜进行讨论。黄学良透露:“最快明年就能在市场上看到产品了。”

  黄学良还指出,未来无线充电技术还将在与智能电网的结合中得到长足的发展。如果能在道路上实现无线供电,会进一步降低对电池容量的要求,更有力地推动电动汽车的大规模应用。

  “电动汽车与智能电网建设结合,可以监控所有电动车辆的电池状态,采集高峰、低谷用电负荷及电价等方面的相关信息,引导电动汽车车主合理充放电,不再需要大量工作人员的参与,降低了人力管理及维护的成本。”黄学良说。

关键字:磁耦合  HaloIPT  无线传输 引用地址:电动汽车无线充电技术明年走进市场

上一篇:bq77910:锂电池背后的保护神
下一篇:基于MCGS的电动汽车充电站监控系统设计

推荐阅读最新更新时间:2024-11-14 18:12

联芯通应用案例 Wi-SUN Mesh实现数百支充电桩之间的无线传输
联芯通应用案例 Wi-SUN Mesh实现数百支充电桩之间的无线传输 杭州市 – 2023 年 7 月 6 日 – 随着电动汽车销售量日益提升,高效、可靠的充电基础设施的需求变得至关重要。对于拥有数百支充电桩的大型、多层停车场而言,充电桩间的通信是一项严峻的挑战。 这就是 Wi-SUN(Wireless Smart Ubiquitous Network)作为一项改变游戏规则的技术应运而生的地方,与该领域的其他解决方案,例如 5G、LoRa相比,它具有许多优势。 应用场景 在今天分享的场景中,我们的客户寻求一种无线通信技术,用于在一个大型地下、多层停车场中传输充电桩间的信息,该停车场有数百个充电桩分布在多个楼层。
[汽车电子]
联芯通应用案例  Wi-SUN Mesh实现数百支充电桩之间的<font color='red'>无线传输</font>
单片机实现段距离无线传输
在一些特殊的应用场合,单片机通信不能采用有线数据传输方式,而需要采用短距离的无线数据传输方式。短距离的无线传输具有抗干扰能力强、可靠性高、安全性好、受地理条件限制少、安装灵活等优点,可以利用单片机和专用无线传输芯片实现简单的短距离无线传输方案,硬件部分包括单片机端和PC机端,实现单片机和PC机间的数据传输。 主要器件: 1、 单片机端:AT89C52单片机芯片,用于控制无线模块的发射和接受;PTR2000无线数据传输模块,使用了433MHz IGM频段,是真正的单片UHF无线收发一体芯片,可以和单片机的串口直接相连。 2、 PC端:PTR2000无线数据传输模块;TTL电平转换RS-232电平芯片MAX202。 试验流
[单片机]
单片机实现段距离<font color='red'>无线传输</font>
嵌入式远程心电监护系统的设计
0 引言 心电信号是人类最早研究并应用于医学临床的生物电信号之一,通过心电信号诊断心血管疾病是目前医院应用最普遍的方法。目前,检测心脏疾病的常规方法是到医院做心电图,反映患者的心脏功能情况。但这种方法只能描记患者几分钟平卧状态下短时间内的心电图片段,难以获得患者各种状态、各时间段的心电图变化,这样就限制了医生诊断的范围,甚至会贻误对症治疗的时机。因此,本文提出一种嵌入式远程心电远程监控系统设计,病人无需亲自到医院做常规心电图检测,只需要穿着一种专用的服装,就可完成对患者进行移动式、远距离、不间断的心电监护。 1 设计总体结构设计 系统总体设计框图如图1所示。 系统由一个前端模块和一个后端模块组成,前端包括心电采集电路、
[单片机]
嵌入式远程心电监护系统的设计
无线传输技术如何助力风力发电的创新
本文编译自u-blox Ping Monitor、Lattech Systems 与 u-blox 合作,将声学传感器数据连接到云端,以持续监测风力涡轮机叶片的健康状况,从而改变清洁能源设备的运维方式。 物联网设备和企业之间很难进行数据通信 从表面上看,数据传输似乎很简单。有一些物联网传感器设备、一些重要数据、一个网络和一个接收数据的云平台。但在启动任何物联网项目之前,都需要解决一系列复杂的问题。什么连接标准?哪个网络?如何规模化?安全吗?功耗和数据传输率如何?数据接口是什么?成本如何?找到正确答案对于项目的成功至关重要。 Ping Monitor 和 Lattech Systems 与 u-blox 合作,将声
[物联网]
<font color='red'>无线传输</font>技术如何助力风力发电的创新
动力试验车图像无线传输控制系统的开发应用
0 引 言 长期以来,我国铁路各大机务段对电力机车进行动力学实验时,一般是将被测试机车上的视频信号以及状态信号通过有线电缆传输到动力试验车上。考虑到机车现场环境的特殊性,有线电缆传输方式使用不便且易损坏,本系统就是针对这种情况而开发的,采用无线传输方式实现系统所需功能,其使用方便、性能可靠,在很大程度上提高了牵引实验的工作效率。 1 系统总体结构 该系统通过无线图像音频传输模块将机车司机室摄像机拍摄的图像信息传送到试验车端显示器,以及实现两端语音传输。通过开关量采集模块采集试验车端云台控制器发出的控制指令,采用点对点的无线通信方式,将采集来的数据按GFSK调制方式通过无线数传模块调制成微波信号发送;接收端无线数传模块接收到数据
[单片机]
动力试验车图像<font color='red'>无线传输</font>控制系统的开发应用
小广播
最新汽车电子文章
换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved