每辆汽车中都至少有一个蓄电池,它通常有两个功能:启动发动机;给车内的电气装置供电,例如电动车窗,车载收音机等。在汽车发动机启动后,发动机将会通过发电机把动能转化为电能,然后给汽车电池充电来实现这个功能。
为了满足以上两个功能,汽车的电池需要提供一个稳定的12伏的直流电源。电池工作异常,是很多汽车电气故障的主要原因,其中与发动机有关的问题将可能引发一系列的安全隐患。汽车发展的主流趋势就是车载电子设备和电子应用越来越多,混合动力和纯电动汽车逐渐流行,这都直接导致汽车电力负荷越来越高,不断增加电池的压力,要求对电池的工作情况尽可能多的实现实时监控,以分析可能出现的故障原因。另一个市场需求来自于气候的变化,极端天气的频繁出现让车载电池的故障率持续攀升,2012年底的欧洲和2013年底的美国,都因为极端气候导致的电池故障事故率大幅攀升。
随着全新的关键任务需求(如发动机启停功能)越来越常见,分析公司Strategy Analytics的报告指出,截至2020年,全球预计将有超过5200万辆汽车可支持启停功能。启停需求以及其他需求(如再生制动和智能交流发电机控制)正促使传感器对电池状态进行更加精确的传感,以提供早期故障告警。智能电池管理系统(BMS)持续监控电池性能,包括电池充电状态,电池生命周期状态和电池对各种应用供电支持的状态,监控电池工作的性能可减少因电池亏电造成车辆抛锚的风险。这种系统基于智能电池传感器(IBS),可直接测量电池电流、电压和温度。测量数据传送给电池监控运算程序(BatMon)。BatMon计算电池状态并通知能量管理器电池所含能量、性能水平和使用寿命。这种信息反过来可用于支持启动-停车功能。当检测到电池接近临界状态时,立即提示驾驶者更换电池。
为了可以更好地支持面向汽车和工业应用的传统和新兴电池化学品,飞思卡尔半导体推出了MM9Z1J638电池传感器,它是业内首款面向普通市场的符合AEC-Q100标准的智能电池传感器。该传感器在单一封装内集成了4路电压检测通道、5路温度采集通道和1路电流采集通道、3个模数转换器、1个16位MCU和CAN协议模块。MM9Z1J638电池传感器测量了多项关键电池参数,以监控电池的健康状态(SOH)、电荷状态(SOC)和功能状态(SOF),从而进行早期故障预测。灵活的4通道电压采集架构可支持传统12V铅酸电池和其他新兴的电池应用,如14V堆叠锂电池、高压接线盒和24V卡车电池。
相比于市场上其它方案,MM9Z1J638电池传感器集成了1个带有128K闪存、8K RAM和4K EEPROM 的16位S12Z 微控制器,和1个CAN协议模块、LIN接口和3个模数转换器电路,该传感器将模拟、处理器和通信功能集于一身,有助于降低物料成本并采用更加先进的电池监控算法。该模拟前端包括两个16位ΣΔ模数转换器(ADC),用于同步测量电池电压和电流,另外还有第三个16位ΣΔ 模数转换器(ADC)用于温度监控,采用集成式传感器和冗余测量真实性检查以保证功能安全。全新飞思卡尔产品的输入电池电压测量功能可支持高达52V的电压直接接入设备,并且当与外部分压电路配合使用时,可支持更高的电压电池配置。其定期唤醒功能可使器件长时间以低功耗模式运行,从而降低系统平均功耗。MM9Z1J638完全符合AEC-Q100汽车标准,可满足严苛的汽车业ESD、EMC标准并达到零缺陷质量水平。
飞思卡尔开发的具有CAN/LIN接口的四节锂电池智能管理单元解决方案,支持功能包括:4个电压输入通道(从1.3 V最高至50 V)电压检测;4个外部温度检测和1个内部温度检测通道;多达 /-2000 A电流检测,外接100 μΩ分流器电阻;4个电池单体被动均衡通道(基于MC33879);两个低边和两个高边开关控制(基于MC33879); 供电电压范围3.5 V至28 V;支持CAN (物理层MC33901)、LIN、SPI、UART 通讯接口。
飞思卡尔产品的设计和制造都经过严格的流程控制,并采用行业标准方法进行了检验,达到汽车市场严格的低缺陷率要求。此外,其模拟产品也基本可满足工业市场的关键需求,例如可在更大的温度范围内运行。
上一篇: 电子发烧友网 > 汽车电子 > 正文
下一篇:ST推出两款汽车微控制器