数据收集
车企、经销商、互联网及消费者等多渠道的数据收集方式日趋完善,使汽车大数据逐步覆盖全链条。车企大数据包括客户信息、交易信息、车辆信息、生产信息、采购信息、维修信息、投诉信息等,随着企业信息管理水平的提高以及新的数据采集技术的使用,这些数据都将逐步得到完善。经销商通过移动互联、后台音频整理、证照识别录入等新技术的使用,实现从消费者 “关注”到“消费”整个过程核心行为要素的实时监测,确保消费者入店行为数据的全录入,同时监测车辆4S店维修保养信息。通过统计微博、峰会、网页等互联网大数据,企业可以监控客户进入首页,查看车辆详情及停留时间,洞察客户对车辆的关注点和走势,掌握不同客户的潜在需求及预期,监控产品舆情反馈等等。在消费者方面,车联网将对客户使用车辆的信息进行监测,包括车主行为数据、车况数据、位置数据、驾驶数据等。
数据分析
需要将多渠道、标准不一的客户数据进行整合,建立汽车大数据库,主要分六步:数据融合、用户识别、全网用户识别、用户标签、用户聚类、用户细分。数据融合是把分散在不同系统之间的数据整合在一起,包括生产数据、销售数据、售后数据、互联网数据等。用户识别是通过数据清洗,识别出每个客户的详细信息。全网用户识别是采集客户的网上行为数据,进行全网客户识别,产生360度全方位客户视图。用户标签是将每个客户的特点、爱好、生活习惯,进行细致区分,并以标签化进行用户定义。用户聚类是指根据客户的标签进行分组。用户细分是对客户完成精准细分,针对目标客户开展一对一精准营销。通过这六步即建成统一、整合、可直接使用的数据库。
数据利用
汽车行业对互联网、大数据等新兴科技的利用涉及到产业链的各个环节,包括:用户洞察、开展精准营销、改善客户管理及服务、改善产品研发和提升产品质量、业务运营监控、汽车后市场、交通领域、汽车流通等方面。通过对多渠道的汽车大数据进行融合及挖掘,能够深刻地了解客户需求及动向、掌握客户信息、进行市场细分、竞争分析、掌握客户满意度等。大数据还可用于开展精准营销,通过整合汽车媒体、微信、官网等互联网渠道潜客数据,扩大线索入口,提高非店面的新增潜客线索量,并挖掘保有客户的增购、换购、荐购线索,从新客户和保有客户两个维度扩大线索池;运用大数据原理,定义线索级别并进行购车意向分析,优化潜客培育,提高销售线索的转化率,提升销量。
大数据应用于客户管理方面可以提升客户满意度,改善售后服务。通过建立基于大数据的CRM系统,了解客户需求,掌握客户动态,为客户提供个性化服务,促进客户回厂维修及保养,提高配件销量,增加售后产值,提升保有客户的利润贡献度;大数据可以改善产品质量,促进产品研发。通过用户洞察,进行产品设计改进及产品性能改进,提高产品可靠性,降低产品故障率;大数据应用在企业运营方面可通过搭建业务运营的关键数据体系,开发可视化的数据产品,监控关键数据的异动,快速发现问题并定位数据异动的原因,辅助运营决策。