电动汽车电机与普通电机的7点区别

发布者:炉火旁的Yye最新更新时间:2016-05-04 来源: ZLG致远电子关键字:电机  加速  驱动力 手机看文章 扫描二维码
随时随地手机看文章
电动汽车是汽车行业的发展趋势,大家都知道其原理核心是用电机替代发动机,实现电力驱动。但大家又有没有想过电动汽车上的电机和普通电机又是否一样呢?
电动汽车是汽车行业的发展趋势,大家都知道其原理核心是用电机替代发动机,实现电力驱动。但大家又有没有想过电动汽车上的电机和普通电机又是否一样呢?答案肯定是否定的,和常规使用感应电机相比,电动汽车电机无论在性能要求和驱动原理上都有较大区别:
1、 电动汽车电机应该具备较大的启动转矩、良好的启动性能和良好的加速性能来满足电动汽车的频繁启停、加减速或爬坡等要求。反映在电机测试上,就是要求电机在进行转速或转矩控制时,响应时间要短;同时在外界负载发生阶跃变化时,电机自身的反映要够快,调整输出的功率和转速;
 

 
2、电机汽车电机的恒功率范围应该设计得较为宽广,以满足电动汽车高速行驶时的转矩输出,保证汽车可实现的最高时速;
3、电动汽车电机应该具备较大范围的调速能力,在低速时具有较大的转矩,在高速时具有高功率,能够根据驾驶需要,随时调整电动车的行驶速度和相应的驱动力;
 

 
4、电动汽车电机应该具备良好的效率特性,在较宽的转速/转矩范围内,获得最优的效率,提高一次充电后的持续行驶里程,一般要求在典型的驾驶循环区,获得85%~93%的效率;
 

 
5、电动汽车电机的外形尺寸要求尽可能小,质量尽可能轻,功率密度最优化;
6、电动汽车电机应该具备良好的可靠性,耐温和耐潮湿性能强, 能够在较恶劣的环境下长期工作,运行时噪音低,维修方便;
 

 
7、结合电机控制器是否能有效的回收制动产生的能量。
 

 
打造高效的新能源汽车驱动电机
致远电子基于对电机及电动汽车行业的深入探索和长久积累,成功在MPT系列电机测试系统上整合面向新能源汽车的特殊测试项目——MAP图和再生能量回馈试验,为广大电动汽车电机设计者提供优秀的测试解决方案。
1.1.1 MAP图
根据GB/T 18488-2015电动汽车用驱动电机系统试验标准,需要对新能源汽车驱动电机进行MAP图测试,获取该电机的效率特性和高效区分布情况。MAP图实际测试结果如下图:
 

 
图中横轴为转速,纵轴为转矩,颜色表示对于的效率,它代表了电机在不同的工作区域(转速,转矩)下的效率特性分布情况,其中橙红色部分就是电机的高效区。高效区分布越广,代表该电机在各类工况下运行时越省电。
MPT电机测试系统内置MAP自动化测试功能,可以根据用户预先设置的加载情况,自动控制负载和被试电机进行对应的工况加载,获取不同工况下的效率,最终把海量的测试数据整合成一张MAP图,直观地为用户分析电机的效率特性和高效区分布情况。
1.1.2 再生能量回馈试验
同样根据GB/T 18488-2015电动汽车用驱动电机系统试验标准,还需要对新能源汽车驱动电机进行再生能量回馈试验。该试验目的是考量驱动电机在制动时,即运行在发电机状态时,能否正常实现电能的回馈,同时评估电机的真实能耗情况。
针对驱动电机的再生能量回馈试验,致远电机MPT电机测试系统可灵活利用内置MDA电机与驱动器分析仪的积分功能,对电机控制器的输入端进行实时积分,精确捕捉该电机在制动时回馈的能量值。
 

 
同时针对电机控制器和动力电池之间直流充放电特性,致远电机特殊设计充放电积分功能,可对电机控制器输入端的电信号进行采样率周期实时积分,即使电机快速在电动机状态和发电机状态之间切换,也可以捕捉到一段时间内电机和动力电池之间的能量传输情况。
 
关键字:电机  加速  驱动力 引用地址:电动汽车电机与普通电机的7点区别

上一篇:伟世通智能座舱电子整合方案SmartCore亮相
下一篇:标准落后困扰汽车仪表行业

推荐阅读最新更新时间:2024-07-25 19:16

加速电动车辆开发,NXP推出新型汽车动力控制参考平台
全球最大的汽车半导体解决方案供应商1恩智浦半导体(纳斯达克代码:NXPI)宣布推出用于电动车辆牵引电机控制器的新型汽车动力控制参考平台。恩智浦新型动力马达控制器参考设计平台将恩智浦全系列世界级汽车微控制器(MCU)产品组合、可靠的电源管理系统基础芯片(SBC)、新型隔离式高压IGBT栅极驱动器与专用系统支持软件相结合,帮助汽车制造商以更快的速度和更低的开发风险交付下一代混合动力和电动车辆。 牵引电机控制器将直流电池电压转换成多相交流电,从而以驾驶员要求的速度和加速度驱动电动和混合动力车辆的牵引电机。为了监控电机状态,检测驱动电流,以及可靠地计算并应用所需的扭矩能量,需要复杂的系统控制。 恩智浦与VEPCO Technolo
[汽车电子]
基于虚拟仪器的电机故障声测系统
0 引 言 为了确保产品的高质量,每台电机出厂前都要进行参数检测。在规模化生产的今天,电机检测线是目前大部分电机生产厂家采用的出厂检测方式。噪声检测是其中一个测试项目。通常的方法是让检测线经过消音室,富有经验的工人在室内凭听觉辨别故障电机。这种方式对操作人员要求高,劳动强度大,缺乏客观性,不能保证质量的稳定性,而且检测速度慢,也严重影响了电机出厂试验的速度与准确率。因此,电机厂家迫切需要改造现有的噪声出厂检测技术。 目前采用较多的方法有振动诊断技术和声频诊断技术。振动诊断技术是接触式测量,需克服测试线线体振动的影响,设备结构复杂,速度慢;而声频诊断技术为非接触式测量。设备简单、速度快。为此,研制了基于美国NI公司软件平台Lab
[测试测量]
基于虚拟仪器的<font color='red'>电机</font>故障声测系统
TPC单元及其在步进电机调速中的应用
步进电机在各种自动化控制系统中有着广泛的应用,是机电一体化装置中的关键部件。这是一种数字控制的电动机,是将电脉冲转化为角位移的执行机构,它通过控制脉冲个数和脉冲频率来控制电机的角位移量和转动速度,从而达到准确定位和调速的目的。 传统的步进电机所需的数字式电脉冲信号(即方波控制信号)一般都是借助数字逻辑电路来产生。随着嵌入式技术的不断发展,单片机的应用更为广泛,由单片机定时来产生这种脉冲信号的场合越来越多。单片机定时控制脉冲一般有软件定时和定时器定时两种方式。前一种方式占用了CPU的大部分工作时间,所以常用定时器定时中断来产生脉冲信号。由于一般的单片机系统中断响应时间大部分在10Us级以上,因而定时器定时中断来产生脉冲的精确度大致也
[应用]
H桥电路原理及直流电机驱动编程
上图中所示为一个典型的直流电机控制电路。电路得名于 H桥驱动电路 是因为它的形状酷似字母H。4个三极管组成H的4条垂直腿,而电机就是H中的横杠(注意:图只是示意图,而不是完整的电路图,其中三极管的驱动电路没有画出来)。 H桥式电机驱动电路包括4个三极管和一个电机。要使电机运转,必须导通对角线上的一对三极管。根据不同三极管对的导通情况,电流可能会从左至右或从右至左流过电机,从而控制电机的转向。 要使电机运转,必须使对角线上的一对三极管导通。例如,如下图所示,当Q1管和Q4管导通时,电流就从电源正极经Q1从左至右穿过电机,然后再经 Q4回到电源负极。按图中电流箭头所示,该流向的电流将驱动电机顺时针转动。当三极管Q1和Q
[单片机]
克服3D打印机中的步进电机设计挑战
本文作者:德州仪器AIMEE KALNOSKAS 3D打印是一个快速增长的市场,具有巨大的增长潜力。3D打印机通过直接从计算机辅助设计模型中连续沉积材料来创建复杂的三维对象。农业,医疗保健,汽车,机车和航空工业是3D打印设计原型和生产的首批采用者。随着这些行业的广泛采用,对小型,准确,节能且静音的3D打印机的需求也日益增长。 所有3D打印机都使用多个步进电机来产生高质量的打印,这些步进电机沿X-Y-Z轴移动打印机底座,或选择颜色以及挤出机等功能。使用高性能的步进电机驱动器可以帮助打印机电机安静,精确,高效地移动。在本文中,我将探讨如何找到合适的步进电机驱动器,以从头开始构建3D打印机或升级现有打印机。 3D打印机步进驱
[工业控制]
克服3D打印机中的步进<font color='red'>电机</font>设计挑战
Cortex-M3的直流无刷电机控制系统的设计
引言 传统的直流电机以其优良的转矩特性和调速性能在运动系统中有着广泛的应用,但机械电刷却是它致命的弱点。电刷的存在带来了一系列的问题,如机械摩擦、噪声、电火花无线干扰,再加上寿命短、制造成本高及维修困难等缺点,从而大大限制了它的应用范围。直流无刷电动机是利用电子换向装置代替传统的机械换向(电刷和换向器)的一种电动机,既保持了有刷电机的优良特性,又避免了电刷和换向器带来的缺陷。本文以32位ARM Cortex-M3内核的高性能微处理器LPC1766为核心,设计了直流无刷电机控制系统。该系统电路简单,软硬件开发方便,具有较高的性价比。 1 LPC1766简介 微控制器采用LPC1700系列ARM芯片LPC1766。LPC176
[单片机]
Cortex-M3的直流无刷<font color='red'>电机</font>控制系统的设计
AI主播、AI记者、AI编辑,传媒行业加速AI化
AI 让人丢饭碗,这句话在各行各业一点点被实践。 The Verge 消息:微软从 Microsoft News、MSN 等媒体中裁撤了数十名新闻媒体工作者和编辑人员,其中涉及英国 27 名员工和美国 50 名员工,并用 AI 将其替换。 在过去,微软曾雇佣诸多编辑人员和记者用于维持 Microsoft News 正常运营,用人高峰期微软在全球 50 个地区拥有 800 多名编辑人员。但随着 AI 的深入,Microsoft News 方面逐渐转向 AI,其鼓励出版商和新闻工作者使用 AI 辅助工作,或用 AI 替代人工进行内容的处理、过滤、发表。 微软作为全球名企,每个改变都会引起其他企业效仿和学习,这一次 AI 替
[嵌入式]
微型电机驱动电路分析与介绍
以下所述电路用于3V供电的微型直流电机的驱动,这种电机有两根引线,更换两根引线的极性,电机换向。该驱动电路要求能进行正反转和停止控制。 电路一 如下图所示,些电路是作者最初设计的电路,P1.3、P2.2和P2.4分别是51单片机的IO引脚。设计的工作原理是:当P1.3高电平、P2.2和P2.4都为低电平时,电机正转。此时,Q1和Q4导通,Q2和Q3截止,电流注向为+5VàR1àQ1àMàQ4;当P1.3低电平、P2.2和P2.4都为高电平时,电机反转。此时,Q2和Q3导通,Q1和Q4截止。P2.2为高电平同时P2.4为低电平时,电路全不通,电机停止。 图中电阻:R1=20Ω,R2=R3=R4=510Ω 但实际实验情
[嵌入式]
小广播
最新汽车电子文章
换一换 更多 相关热搜器件
随便看看

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved