CAN总线冷知识-边沿台阶是怎么来的?

发布者:WhisperingLight最新更新时间:2019-04-19 来源: 电子产品世界关键字:CAN  通信  致远电子 手机看文章 扫描二维码
随时随地手机看文章

你了解CAN总线波形吗?你知道是什么因素造成CAN信号不稳定的吗?本文将带你探究影响CAN波形稳定的罪魁祸首——边沿台阶。

阻抗匹配是指信号源或者传输线跟负载之间达到一种适合的搭配,阻抗匹配主要为了调整负载功率和抑制信号反射;然而,阻抗不匹配的现象在CAN总线网络中随处可见;如图1所示,阻抗不匹配的将造成7个现象,其中最受关注的为上升沿和下降沿的台阶;下文将针对边沿台阶的现象做详细介绍。

1555555282699245.png

图1  阻抗不匹配波形

解释边沿台阶是怎么出现的,如何消除,对总线有何影响;

一、边沿台阶的源头

在CAN总线的网络布局中,手牵手直线型拓扑是最理想最常规的布局;但是在实际现场中,经常会出现分支的现象。这里重点提一下,在计算CAN总线长度的时候,分支(从收发器端至总线)长度也要加上。为此我们做了分支过长的实验,实验中CAN总线中有三个CAN节点,主干线长度为15米,其中一个节点的分支长度为1米,波特率为250k的情况下进行通信。下图为实验的CAN波形图,明显可以看到上升沿和下降沿存在台阶现象,从而引起波特率变化,导致接收节点采样出错(也称位宽错误)。

1555555261347802.png

所以,边沿台阶出现的源头主要是CAN节点的分支,分支过长形成的反射就变强,将会导致位宽度失调的错误。ISO11898中只规定1M波特率下分支不超过0.3米,但是在其它情况下并没有做声明,这个便取决于现场工程师们的经验。

二、消除边沿台阶

边沿台阶是造成错误波形的罪魁祸首,那么该如何消除边沿台阶的现象呢?下文将从源头以及补救措施上分别介绍一些可靠有效的方法。

1.减少分支长度

在CAN网络布局的根源上解决问题的方式就是减少CAN节点的分支长度,从而降低信号反射,保证位宽的稳定性。在上述实验中,其它条件不变,只将分支长度减少为20cm;下图为CAN波形图,此时并没有看到边沿台阶的出现。由此可见,减少分支长度是消除边沿台阶的最直接方式。

1555555235876644.png

2.长分支上加适当电阻

在网络布局无法改变,分支引起的信号反射必须存在的情况下。最实用的方法就是在长分支末端加上电阻,消除信号反射。同样的在上述实验中,在分支节点处加上一个200Ω的电阻,其它条件不变进行通信实验。下图为实验的CAN波形图,此时可以看到边沿台阶已被消减,但是加了电阻之后差分电压变小,注意差分电压不得小于0.9V。这里值得一提的是:阻值大于500Ω的电阻吸收反射的能力很弱,所以在末端挂电阻的时候应小于500Ω。

1555555213637600.png

3.缩短残端

前面提到分支长度指的是从节点收发器至总线处的距离,在节点设计之初,应选择TTL远传方式,因为TTL电平不受CAN电容影响,所以收发器应靠近接口摆放,以减少分支残段的长度,建议控制在10cm以内,可以保证阻抗连续。

TTL远传最直接的方式就是将CAN收发器紧挨着CAN主干线放置,这样就没有分支长度。光缆星型拓扑结构便是使用这种方式,如下图;CAN光纤收发器内置在盒子里面,使用TTL电平远传到另一个CAN光纤收发器,解决了节点随意变化问题(节点任意上下电或插拔)。

1555555193461978.jpg

4.消除负载集中

在布局较复杂的CAN网络中,为了避免节点摆放集中导致反射叠加,建议相邻节点的距离不得小于2cm,10m的电缆上所集中的设备最好不要超过4个,否则应加电容以吸收,并且此集中与下一个集中至少有10m的电缆距离。

同样,在复杂网络布局中,分支过长且不等的网络,由于阻抗匹配困难,常使用集线器或中继器进行分支;集线器和中继器有独立的控制器和MCU,将每段形成独立的直线拓扑,如下图。

1555555171198686.png

5.屏蔽层分段接地

屏蔽层多点接地需要注意接地点电位,避免地回流影响信号质量。若屏蔽层太长可以采用分段屏蔽,单点接地方法,如下图,就可以有效避免地回流的问题。

1555555150660443.jpg

三、边沿一致性测试

信号边沿是反映信号质量好坏的重要指标。若信号下降边沿变缓造成CAN信号波形一定程度的失真,导致收发器采样出错。参考主流车企的边沿测试,一般把边沿10%到90%所经历的时间作为边沿时间,仿真了DUT接入CAN网络时可能会受到的容抗影响,以使测量结果更具有实际意义。分别在CANDT仿真的小电容、大电容负载的环境,对DUT的边沿进行测量。

l测试目的:分别在小电容和大电容负载下测量CANH、CANL及CANDIFF信号位上升或下降时间;

l测试原理:测试原理如下图,DUT往总线正常传输数据时,传输的数据帧是显性位和隐性位的序列,即传的数据中包含了上升、下降时间信息;

1555555122134027.png

四、CANDT

ZLG致远电子发布的CANDT一致性测试系统可自动化完成CAN节点物理层、链路层及应用层一致性测试,是当前CAN总线测试领域唯一能够进行完善的物理层自动化测试并导出报表的仪器设备。避免了人工测量统计的误差,同时配合自动化测试的方式,减少了测试时间的浪费,提高了测试的准确度,极大节约了人工成本。

CANDT一致性测试系统基于CANScope底层分析能力,集成示波器、电源等必要设备,可覆盖主机厂CAN一致性测试标准,为主机厂及零部件企业建立CAN总线测试及保障体系。

1555555097338084.jpg


关键字:CAN  通信  致远电子 引用地址:CAN总线冷知识-边沿台阶是怎么来的?

上一篇:Denso为下一代汽车选用赛普拉斯Semper无故障存储器
下一篇:拼技术硬核,ADI打造创新音频总线走入全球90%的汽车厂商

推荐阅读最新更新时间:2024-11-04 12:19

基于LabVIEW的PC机与变频器的串口通信
1 引言 近年来,随着电力电子技术、微电子技术及大规模集成电路的发展,生产工艺的改进及功率半导体器件价格的降低,变频器调速越来越被工业上所采用。在摩擦学测试系统中,用变频器控制电机实现试验设备的速度调节已经成为一种非常重要和有效的控制手段。 由于摩擦学试验机和摩擦学测试的特殊性,摩擦学试验中的变频器调速有着不同于一般工业变频控制的特点。一方面,要求变频器调速能够在较大范围内满足摩擦学测试的要求,使得试验结果具有可比性;另一方面,摩擦磨损试验过程中,对控制有一些特殊的要求,例如需要特殊的速度、运动的非周期性以及设备的快速启动和停止等。在一些疲劳试验中,甚至要求电机进行寸动或者往复运动以检测材料的性能,有的试验现场对人
[工业控制]
一文读懂容错CAN
CAN-bus家族中有三大成员,分别是高速CAN、容错CAN、单线CAN。其中容错CAN又叫低速CAN,它与最常用的高速CAN有什么异同呢?这里将与大家分享下对容错CAN的认识。 一、容错CAN的起源 1986年Bosch在SAE(汽车工程人员协会)大会上提出CAN总线概念,CAN总线率先在汽车电子行业孕育。随后的1987年Intel推出第一片CAN控制器芯片82526,由此点亮CAN总线发展的星星之火。六年之后CAN国际标准ISO11898/ISO11519发布,CAN总线在通信领域的燎原之势由此展开。 图1 CAN总线应用行业 ISO11898是高速CAN的标准,ISO11519是低速CAN的标准。起初,高
[嵌入式]
一文读懂容错<font color='red'>CAN</font>!
使用STM32F103做CAN的收发通信
一、can通信 CAN 是Controller Area Network 的缩写(以下称为CAN),是ISO国际标准化的串行通信协议。 CAN协议是通过以下5种类型的帧进行的: l 数据帧 l 摇控帧 l 错误帧 l 过载帧 l 帧间隔 另外,数据帧和遥控帧有标准格式和扩展格式两种格式。标准格式有11 个位的标识符(ID),扩展格式有29 个位的ID。 大部分系统使用的都是数据帧 ,我这里使用的也是数据帧。 数据帧一般由7个段构成,即: (1) 帧起始。表示数据帧开始的段。 (2) 仲裁段。表示该帧优先级的段。 (3) 控制段。表示数据的字节数及保留位的段。 (4) 数据段。数据的内容,一帧可发送0~8个字节的数据。 (5)
[单片机]
DC 应用的电力线通信实施
  引言   电力线通信 (PLC) 是一种通过现有电力线缆发送数据的通信技术。该技术可采用半双工方式在 PLC 节点之间传输电力与数据。由于能通过相同线路同时传输电力及数据,因此 PLC 技术无需使用额外线路与设备互联。PLC 可为各种广泛应用提供低成本通信媒介,充分满足可能采用其它技术组网成本过高的环境需求。作为通信技术,PLC 可分为两大类:   ● 宽带 PLC 适合互联网等高速宽带网络连接。它一般工作在较高频率(1.8 至 250MHz)和高数据速率(高达数百 Mbps)下,多为较短距离应用使用。   ● 窄带 PLC 适用于需要窄带控制或低带宽数据采集的应用,这些应用注重低成本和高可靠性。它一般工作在较低频率(3 到
[电源管理]
DC 应用的电力线<font color='red'>通信</font>实施
PIC16位单片机CAN(4)CAN发送报文详解
一个CAN的发送报文花费了快三天的时间,以前没有接触过CAN也没使用过DMA,因此遇上不少阻力,还好终于整出来了。 CAN的帧格式太多了不再说明。可以自己网上下载看看帧结构。这里只说一点,最长的帧是扩展数据帧。计算如下: 1sof + 29id + 1ide + 1rtr + 1srr + 2r + 4dlc + 8*8data+ 16crc + 2ack + 7eof = 128bit 1:由于选用的单片机有一个增强型CAN也就是ECAN因此我们必须使用DMA了,原因看下图: 数据手册有这么一句话:ECAN 报文缓冲区位于器件 RAM 中。它们不是 ECAN SFR。用户应用程序必须直接写入为 ECAN报文缓冲区配置的
[单片机]
PIC16位单片机<font color='red'>CAN</font>(4)<font color='red'>CAN</font>发送报文详解
串行通信接口标准
数据通信、计算机网络以及分布式工业控制系统中,经常采用串行通信来交换数据和信息。  1969年,美国电子工业协会(EIA)公布了RS-232C作为串行通信接口的电气标准,该标准定义了数据终端设备(DTE)和数据通信设备(DCE)间按位串行传输的接口信息,合理安排了接口的电气信号和机械要求,在世界范围内得到了广泛的应用。但它采用单端驱动非差分接收电路,因而存在着传输距离不太远(最大传输距离15m)和传送速率不太高(最大位速率为20Kb/s)的问题。远距离串行通信必须使用Modem,增加了成本。在分布式控制系统和工业局部网络中,传输距离常介于近距离(<20m)和远距离(>2km)之间的情况,这时RS-232C(25脚连接器)不能采
[模拟电子]
STM32的IIC通信原理详解
本文将介绍STM32 IIC的通信原理和协议 ①IIC总线简介 ②IIC总线协议与读写操作 ③STM32 IIC控制器介绍 ①IIC总线简介 IIC是inter integrated circuit的简称,IIC是由PHILIPS公司开发的两线式串行总线;该总线具有接口线少、易于控制、通讯速率高等有点,在微电子控制领域被广泛使用。 IIC总线具备以下特征: 1、同步通信,半双工,以字节为传输单位; 2、两条线路、SDA和SCL; 3、挂载在IIC总线上的设备均可为主设备、亦可为从设备; 4、具有3种传输速率,最高可达3.4Mbit/s;可通过总线时钟的频率和总线上拉电阻来配置传输速率; 5、多主机功能、7位和10位地址模式、可以软
[单片机]
STM32的IIC<font color='red'>通信</font>原理详解
MeeGo:英特尔的胃口远不止通信市场
  iPhone、Android、Windows Mobile等智能手机在手机市场上打得传统手机厂商只有招架之功的背后,是苹果、Google、微软等计算厂商抓住了移动通信市场从语音服务转向数据服务这一历史性的机遇。   作为计算基础的处理器厂商,英特尔也在不停地积蓄力量。今年年初在巴塞罗那举办的世界通信大会上,英特尔与诺基亚联手发布了嵌入式操作系统MeeGo。如果说与全球最大的手机厂商合作,英特尔的目光就盯在手机市场的话,那就太小瞧英特尔了。   从扩展摩尔定律到互联计算   英特尔很早就预测到计算将会向通信延伸。早在2002年春季的英特尔技术峰会(IDF)上,英特尔便提出了扩展摩尔定律,其中很重要的内容是要将PC市场的成功
[嵌入式]
小广播
最新汽车电子文章
换一换 更多 相关热搜器件
随便看看

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved