随着汽车技术的高速发展,汽车自动化、智能化程度的逐步提高,人们对汽车的安全性、舒适性、娱乐性等要求也不断提高,加上汽车节能减排法规的不断严峻,整车电气设备不断增加,作为连接汽车各种电器设备“神经网络”的整车线束也越来越复杂,对可靠性也提出了更高的要求。
近年来汽车市场竞争的激烈化加剧,很多车企推出了各个层次的竞争措施,其实市场竞争归根究底是技术、价格、服务和质量可靠性上的竞争。
其中技术竞争是最核心的竞争,好的技术决定了车企是否能够赢得头筹。其中质量与可靠性的竞争,决定了车企能否生存。
而价格竞争的结果往往是价格战,很多车企通过牺牲利润来获得消费者的青睐,结果通常是得不偿失。服务上的竞争决定了车企的市场口碑以及后续销量情况,竞争成本也比较高昂。
车企为了提高产品的质量,赢得市场,在设计产品时指导思想发生了重大转变:很多车企开始从仿制走向自主研制, 从解决有无走向掌握技术,提高自主创新能力。
同时要平衡可靠性、利润、上市时间、功能、 客户满意度之间的关系。
所谓可靠性指的是产品在规定的条件下、规定的时间内完成规定功能的能力。可靠性是设计出来的、生产出来的、管理出来的。
1 、线束可靠性设计内容
线束可靠性指的整车线束在车辆使用过程中保证各个电器功能正常工作的能力。
提高线束的可靠性,可以在线束的设计、制作、装配、运输和使用等各个环节贯彻可靠性的要求。
可靠性设计是线束可靠性的基础,其中包含:
• 保险、继电器、导线选型设计
• 布线和固定点设计
• 线束防护、防磨设计
• 连接器可靠性设计
• 电磁兼容性设计
• 防火设计 • 防水设计 • 防震设计
2 、线束可靠性设计案例
线束防火设计要转化成定性和定量的要求,利用热仿真分析工具,将线束布置位置和耐温等级都量化。利用 FCI 工具将线束间隙和距离量化到 mm 尺寸的要求。设计预防:线束设计菜谱 - 线束布置间隙要求热仿真分析。
自燃的可能因素很多:有电气(短路、过流、接触不良)、漏油、烤燃等等。
设计预防:线束设计菜谱 - 线束布置间隙要求。
毛细作用的影响:
结论:水进入导线后,在毛细管作用 下在导线内进行蔓延,进而造成线束腐蚀。
热缩管防水性能试验 - 气密性
为了防止水进入导线,提高热缩管 防水性能尤其重要。
设计预防:工艺设计要望书 - 热缩管安装要求。
车身隐形水道的影响:
插件应避免布置在隐形水道处。
氧传感器呼吸的影响:
氧传感器插件要密封防水,避免布置在可能被淋雨的位置。
设计预防:线束防水要件书 - 插件位置要求(整车隐形水道分析)。
线束防振设计要转化成定性和定量的要求,利用受力仿真分析工具,将线束布置位置和固定点设置要求量化。
设计预防:线束设计故障预防表 线束受力仿真分析
3 、线束可靠性设计流程:
1、项目配置输入
要望书点检;要件书点检;故障预防表;线束设计菜谱;原理图设计菜谱
汽车线束关系到车辆各种功能的实现和行车安全,提高线束可靠性,就应在 产品的设计、制作、装配、运输和使用等各个环节贯彻可靠性的要求。
关键字:汽车技术 线束可靠性 工艺设计 EMC测试
引用地址:
汽车技术智能化程度不断提升,线束可靠性如何设计?
推荐阅读最新更新时间:2024-10-21 22:30
汽车技术智能化程度不断提升,线束可靠性如何设计?
随着 汽车技术 的高速发展,汽车自动化、智能化程度的逐步提高,人们对汽车的安全性、舒适性、娱乐性等要求也不断提高,加上汽车节能减排法规的不断严峻,整车电气设备不断增加,作为连接汽车各种电器设备“神经网络”的整车线束也越来越复杂,对可靠性也提出了更高的要求。 近年来汽车市场竞争的激烈化加剧,很多车企推出了各个层次的竞争措施,其实市场竞争归根究底是技术、价格、服务和质量可靠性上的竞争。 其中技术竞争是最核心的竞争,好的技术决定了车企是否能够赢得头筹。其中质量与可靠性的竞争,决定了车企能否生存。 而价格竞争的结果往往是价格战,很多车企通过牺牲利润来获得消费者的青睐,结果通常是得不偿失。服务上的竞争决定了车企的市场口碑以及后
[汽车电子]
汽车技术智能化程度不断提升,线束的可靠性如何保证?
随着汽车技术的高速发展,汽车自动化、智能化程度的逐步提高,人们对汽车的安全性、舒适性、娱乐性等要求也不断提高,加上汽车节能减排法规的不断严峻,整车电气设备不断增加,作为连接汽车各种电器设备“神经网络”的整车线束也越来越复杂,对可靠性也提出了更高的要求。 近年来汽车市场竞争的激烈化加剧,很多车企推出了各个层次的竞争措施,其实市场竞争归根究底是技术、价格、服务和质量可靠性上的竞争。 其中技术竞争是最核心的竞争,好的技术决定了车企是否能够赢得头筹。其中质量与可靠性的竞争,决定了车企能否生存。 而价格竞争的结果往往是价格战,很多车企通过牺牲利润来获得消费者的青睐,结果通常是得不偿失。服务上的竞争决定了车企的市场口碑以及后续
[嵌入式]
汽车线束EMC设计基本原则
【摘要】 通过对汽车线束电磁干扰的原理进行分析,基于3种线束干扰耦合方式的原理,给出汽车线束设计时需要遵守的EMC设计原则,并通过CST仿真软件对部分设计原则进行仿真,以验证仿真结果与设计原则的一致性,为汽车整车电磁兼容设计提供依据。最后通过实际案例的解析,再次验证整车线束EMC设计原则。 在全球汽车动力电气化、控制智能化、信息网络化趋势驱动下,智能网联汽车成为国际汽车工程领域的前沿热点与未来市场竞争核心。电子新技术的应用随之而来的是汽车内外电磁环境越来越复杂,不但影响车辆EMC法规性能, 也影响着智能驾驶和网联通信功能的可靠实现,对整车电磁兼容性也提出了严峻的考验。 汽车线束作为整车所有电子电器零部件相互连接以及电气零部
[汽车电子]
汽车线束EMC设计
线束 EMC 设计必要性 1、电磁 环境 - 需求和问题 ①与车外广播电视、 无线通信等设施间的相互影响; 内部电气部件相互影响;电网设备相互影响;人体静电影响和人员防护。 ②EMC 三要素 干扰源:产生变化的电压或电流的零部件。 传播途径:包括传导耦合、辐射耦合。 敏感设备:易被干扰的设备。 线束本身为无源器件,自身不产生电磁干扰,但线束是 “传播途径”! 2、整车功能需求 电磁兼容是一门关于电磁能量的产生、传输和接受的学科,是研究在有限的空间、有限的时间、有限的频谱资源条件下,各种用电设备(分系统、系统, 广义的还包括生物体)可以共存的一门科学。 电磁兼容骚扰等级 等级一:功能在施
[汽车电子]
汽车线束制造中的工艺防错设计
1 切线压接工序的防错设计(MES系统防错) 切线压接工序是汽车线束制造中自动化程度最高的工序,国内绝大部分的线束工厂都采用自动化的切线压接设备进行操作,因此切线压接工序是制造错误出现几率较低的一个工序,通常出现的制造错误是导线、端子、防水栓物料使用错误,导线长度错误,以及压接模具用错导致压接标准不正确,导致半成品返修或报废。运用线束MES系统的工厂通常采用在切换不同看板时进行物料、模具条码扫码确认进行防错,扫码错误出现声音、图像报警,能有效的防治物料的错误使用,图1所示:MES扫码物料确认;对于制造能力较低的工厂可通过首件产品检验时,由质检员对看板物料的二次检验进行控制,这种防错方法不能彻底的杜绝错误的发生。 导线用错的现象
[嵌入式]
汽车电子之线束工艺设计
剥头长度 所有端子在第一次压着时,都需设定合理的剥头长度,以避免压着不到位和芯线外露太长现象。 剥头长度的设计根据端子的实际结构尺寸来设定,有时候还需要考虑外露的芯线是否与相配的针座有影响。 端子剥头长度的设定方法: 切线长度和成品长度 切线长度的设定,要以实际生产为依据,切线长度和成品长度需注意其公差问题。 在工艺文件中,对一般情况的长度公差有所说明,当成品长度超过1000mm时,成品长度的正公差,应该根据1000±10的1%来设定,当成品长度为50000时,公差应设定为:+500/-100,而切线长度的公差也需适当调整,不能不管多长,其公差都设定为±2。 尾部处理 电线的尾部处理可分为:搪锡、捻
[嵌入式]
汽车电子之线束工艺设计
剥头长度 所有端子在第一次压着时,都需设定合理的剥头长度,以避免压着不到位和芯线外露太长现象。 剥头长度的设计根据端子的实际结构尺寸来设定,有时候还需要考虑外露的芯线是否与相配的针座有影响。 端子剥头长度的设定方法: 切线长度和成品长度 切线长度的设定,要以实际生产为依据,切线长度和成品长度需注意其公差问题。 在工艺文件中,对一般情况的长度公差有所说明,当成品长度超过1000mm时,成品长度的正公差,应该根据1000±10的1%来设定,当成品长度为50000时,公差应设定为:+500/-100,而切线长度的公差也需适当调整,不能不管多长,其公差都设定为±2。 尾部处理 电线的尾部处理可分为:搪锡、捻
[汽车电子]
汽车整车线束系统可靠性分析
摘要:整车线束系统作为整车电气系统的组成部分具有非常重要的作用,汽车电子技术的广泛应用使得整车线束系统越来越复杂。通过对线束可靠性设计和线束端子压接以及剖面检查的质量控制标准的简要阐述,以及对端子拉力、电压降和切片试验的分组验证,找到了端子压接拉力和电压降与压接高度的一般规律。根据端子切片试验,综合得出线束生产控制过程中关于压接高度的关键指标,由此可提升线束设计和生产控制的可靠性。 整车电气系统是汽车电子装备安全性和可靠性的核心系统,而汽车整车线束系统作为整车电气系统的组成部分具有非常重要的作用。当下的汽车电气问题都集中反馈在线束这一产品上。某汽车集团收集的数据显示,有50%以上的整车电气系统电气故障都和线束有关。究其
[汽车电子]