基于ARM9的快速对星装置设计与实现

发布者:TranquilMind最新更新时间:2010-04-09 来源: 现代电子技术关键字:电子罗盘  对星  磁偏角  ARM9 手机看文章 扫描二维码
随时随地手机看文章

  0 引 言

  大中型卫星站均具有相应的、完善的天线跟踪伺服系统,天线伺服跟踪系统依据信标信号强弱,决定天线转向,驱动天线旋转,达到准确对星。随着通信技术和电子技术的发展,小型卫星站如车载站、便携站受机动性能和便携性能的局限,不可能采用大中型卫星站才能使用的伺服跟踪系统,采用不同原理,开发适用于小型卫星站天线的对星装置,具有现实意义。

  1 系统概述

  该装置通过GPS采集地理信息、电子罗盘采集姿态信息,根据GPS采集的地理信息,结合通信卫星位置,计算出对星所需要的标准方位、俯仰、极化参数,同时计算出当地、当年磁偏角数据;通过采集电子罗盘数据,得到初步方位、俯仰、极化数据,其中俯仰和极化均为天线实际指向值,但是方位值是以磁北为标准测量值;通过GPS得到的磁偏角数据,对从电子罗盘得到的以磁北为标准的方位值进行修正,得到比较准确的、以真北为标准的真实方位数据。其系统结构如图1所示,其中基于EVC4平台的多线程应用程序流程结构如图2所示。

  2 硬件设计

  本装置在设计上,选择S3C2440作为主控制器构成硬件平台,利用其丰富的外部接口和高速处理能力,达到实时采集数据、及时处理数据、快速传输数据、不附加额外接口设备的目的。由于该装置需要测量的参数多,GPS、电子罗盘统一采用RS 232接口,保证了测量数据精度和接口一致性。供电统一采用+5 V锂电池电源供电。

  3 软件设计

  本装置采用ARM9作为主控制器,以Windows CE.net操作系统作为系统平台,使用EVC4开发环境作为开发工具,软件采用多线程结构,MFC和API编程技术,实时采集传感器数据,计算修正方位值,达到准确对星的目的。

  3.1 总体程序设计

  本装置程序采用多线程结构,在主线程(用户接口线程)的基础上,增加两个辅助线程(工作者线程),辅助线程负责处理数据采集,主线程负责界面响应、数据融合、数据显示。线程处理采用API,而不采用MFC编程,增加了程序的通用性。程序中还使用Suspend-Thread挂起线程、ResumeThread恢复线程、Exit-Thread退出线程。

  线程同步采用临界区域(也称关键区域,即CRITI-CAL SECTION)措施,首先用CRITICAL_SEC-TION申明一个全局变量,再调用InitializeCriticalSec-tion初始化,使用EnterCriticalSection进入关键区域,使用LeaveCriticalSection离开关键区域,使用Delete-CriticalSection函数删除关键区域。其关键部分代码如下:

  3.2 HMR3000程序设计

  电子罗盘数据输出格式满足NMEA0183通信协议规范,根据需求选用$PTNTHPR语句,每秒更新30次,基本满足实时测量的要求。$PTNTHPR语句的数据格式为:

  $PTNTHPR,<1>,<2>,<3>,<4>,<5>,<6>*hh

  各字段含义为:<1>表示方位值,<2>表示方位状态,<3>表示俯仰值,<4>表示俯仰状态,<5>表示横滚值,<6>表示横滚状态,hh表示校验和。采集数据程序在判断各参数状态正常的基础上,从输出语句中提取对应参数值。其线程函数部分代码如下:

  3.3 GPS模块程序设计

  GPS模块数据输出格式也满足NMEA0183通信协议规范,根据需求选用$GPRMC语句,默认更新速率。$GPRMC语句的数据格式为:

  $GPRMC,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,<10>,<11>,*hh。

  各字段含义为:<1>表示方位值,<2>表示方位状态,<3>表示俯仰值,<4>表示俯仰状态,<5>表示横滚值,<6>表示横滚状态。采集数据程序在判断各参数状态正常的基础上,从输出语句中提取对应参数值。其线程函数部分代码如下:

  3.4 对星参数理论值计算

  卫星通信中重要的一步就是卫星通信天线准确对准通信卫星。对星需要三个参数:方位、俯仰、极化。下面分别是三个参数的计算公式,其中ψc是卫星波束中心经度,ψs为卫星的经度,ψg是接收地经度,θ为接收地纬度。

  卫星通信天线方位角计算公式:

  极化角通常位于式(3)和式(4)的计算值之间,为简化计算常采用式(3)作为极化角计算公式使用。经过GPS采集得到接收地经度、纬度,结合卫星经度,采用C语言提供的数学函数可以很简便地计算出天线准确对星需要的三个参数:方位、俯仰、极化。为对星操作提供理论标准值,将对星操作简化为比对理论标准值,调整天线,使实际值与理论值完全一致,从而完成对星任务。

  3.5 方位角修正程序设计

  电子罗盘测量得到的是天线实际指向值,由于电子罗盘是根据地磁场测量出方位值,此方位值实际是以磁北为标准的方位值,而理论值是以真北为标准的方位值,这样在电子罗盘测量值和理论计算值之间存在一个差值,此差值即为磁偏角。要使电子罗盘测量的方位值代表以真北为标准的方位值,必须在电子罗盘测量的数据基础上进行磁偏角的修正。

  根据IGRF2005地磁场模型,利用NOAA的NG-DC提供的磁偏角计算程序,逐一计算覆盖我国领土及周边的磁偏角数据,其纬度为北纬10°~50°,经度为东经70°~140°,构成41×71的二维数组,根据经度、纬度数据提取磁偏角数据,与采集的罗盘数据进行运算,修正罗盘方位值,从而得到代表物体指向的比较准确的方位值。其部分代码如下所示:

  从电子罗盘得到的方位数据,经过磁偏角修正,形成以真北为标准的真实方位数据,从而具有与理论对星参数比对的基础。

  4 应用及结果

  该装置巧妙利用GPS模块和电子罗盘模块,在分别采集模块数据的基础上,利用地理信息进行查表运算,得出当地磁偏角,利用磁偏角修正方位,得到较为准确的方位指向数据。此装置采用S3C2440ARM9芯片作为主CPU,Windows CE.Net为操作系统平台;电子罗盘选用Honeywell HMR3000,GPS选用GARMINGPS25LVS,蘑菇头天线,单一+5 V供电,输出接口均为RS 232。该系统精度高、实时性好、界面直观,具有广泛的应用前景。某型卫星通信装备,天线口径1 m,工作于Ku波段,其半功率波瓣宽度近似计算公式为:θ=70λ/D,得到半功率波瓣宽度θ=1.75°;通过磁偏角修正后的电子罗盘角度指示误差为ψ=±0.5°,θ≥ψ,满足应用需求。2009年乌鲁木齐的磁偏角为-2.93°,如果不加磁偏角修正,其误差总和为2.93°+0.5°=3.43°,超过半功率波束宽度,无法完成对星任务。程序运行后界面如图3所示。

  5 结 语

  经过使甩证明:该装置经过磁偏角修正后,可以使用于方位精度要求±0.5°、倾角和横滚经度要求土0.1°的物体位置和姿态测量。经过在昆明、喀什、北京等地实际使用测量,效果良好,平均对星时间由原来不确定减少到2 min以内(实际测量平均时间为1.4 min),改善效果明显。使用中注意事项:由于此装置采用的电子罗盘,利用地磁场根据磁阻传感信息计算方位的原理,因此,此装置在使用中要求尽量远离框架式建筑物、铁矿厂、铁栅栏、铁门铁窗等大型硬铁物质,避免因硬铁物质对磁力线的影响,导致测量误差大的情况出现。

关键字:电子罗盘  对星  磁偏角  ARM9 引用地址:基于ARM9的快速对星装置设计与实现

上一篇:中国软件企业悄悄进入云计算话语权争夺行列
下一篇:基于MC68HC908LJl2的新型三相电能计量系统设计

推荐阅读最新更新时间:2024-05-02 21:02

基于ARM9的音频系统设计
1 引言   随着 Internet技术和多媒体技术的快速发展,语音通信技术的应用越来越广泛,也越来越受到重视 。如今的嵌人式设备日益复杂化,功能比以前更加丰富,性能也越来越高。在多种嵌人式终端产品中,音频处理功能已成为不可缺少的重要组成部分,高质量的音效是当前发展的重要趋势。   本文利用 ATMEL公司 的 AT91RM9200型微处理器 和 Philips公司的 UDA1341型立体声音频编解码器设计了一种嵌入式音频系统。该嵌入式音频系统硬件部分采用基于IIS总线的音频系统体系结构,其主要硬件电路后文作了详细的介绍。软件上,笔者以嵌入式Linux操作系统作为平台,重点介绍该音频系统在此平台下的驱动程序的实现。   
[单片机]
基于<font color='red'>ARM9</font>的音频系统设计
意法半导体推出工业磁强计和电子罗盘
意法半导体10年供货保证工业级传感器 IIS2MDC 磁强计和 ISM303DAC 电子罗盘,可在智能电表内实现可靠、低功耗的篡改检测功能,在工业自动化、机器人、智能建筑、智能安全和医疗设备等应用中实现精确的运动和距离感测功能。 这两款传感器内部都有一个±50高斯的高动态范围AMR(各向异性磁电阻)磁强计,分辨率和低功耗均达到同类最佳水准。每款产品还集成一个温度传感器,并通过内置I2C / SPI串行接口提供16位数字输出。 ISM303DAC增加一个用户可选满量程、最高±16g的低噪声3轴加速度计,可用于设计电能表的电磁干扰/物理篡改双模检测系统。ISM303DAC还可用于天线指向、定位导航、机器人导引,以及一般工
[半导体设计/制造]
意法半导体推出工业磁强计和<font color='red'>电子罗盘</font>
基于嵌入式WinCE5.0的无线监控系统
0 引 言 传统的视频监控系统主要以模拟信号监控系统和基于插卡的数字监控系统为主。其中模拟信号监控系统布线工程量大,要耗费大量的存储介质,查询取证也十分繁琐;基于插卡的数字监控系统是由1台PC机加图像采集卡完成的,系统的成本高,而且PC机需要有人值守,无法在恶劣环境下使用。在视频监控领域中,如何使信息传输得更快,更稳定,距离更远,系统的成本、体积、功耗更低等问题是摆在当前技术研发人员面前的首要问题。 在此提出一种基于嵌入式Windows CE5.O的无线视频监控系统。解决了传统视频监控系统成本高、体积大、传输距离有限、功耗大、安装不方便等问题。该系统的设计将为无线视频监控提供一种新的思路、方法和技术路线;在安防、远程教育、远程视频
[单片机]
基于嵌入式WinCE5.0的无线监控系统
TQ2440(ARM9)的第一个无OS实验【流水灯】
#include 2440addr.h //包含2440相关寄存器的设置 //四个LED对应GPB5.6.7.8 #define LED1 5 #define LED2 6 #define LED3 7 #define LED4 8 #define Bit(x) (1 x) //将某位置位 #define Output(x) (1 2*x) //将对应IO置为输出 /******************************************* * 名称:Delay * 功能:延时 * 入口参数:无 * 出口参数:无 ************************
[单片机]
S3C2440A时钟结构分析(ARM9架构)
一、时钟树分析 S3C2440A时钟树 从上图的左上角我们可以得知,S3C2440A支持两种外部时钟源输入,一种是通过接在XTIpll与XTOpll上的外部振荡电路(一般由晶振为核心组成),还有一种是通过将现成的时钟频率通过EXTCLK输入。 时钟输入芯片后,送到MPLL(主锁相环)与UPLL(USB锁相环)进行倍频。MPLL出来的时钟信号称之为FCLK,一般直接用于给CPU核心提供时钟信号;UPLL出来的时钟信号称为UCLK,一般用于给USB提供时钟信号。FCLK经过HDIVN与PDIVN分频后会产生HCLK与PCLK,前者一般用于给AHB高速总线与高速外设提供时钟信号,比如USB模块、NAND FLASH控制器等;
[单片机]
S3C2440A时钟结构分析(<font color='red'>ARM9</font>架构)
ARM9的中断处理技术详细深入剖析-三星S3C2440处理器
1、中断的生命周期 中断信号产生(中断源)—》中断信号过滤(中断控制器)—》中断信号处理(CPU) 1.1 中断源 在中断的生命周期中,中断源的作用是负责产生中断信号。 S3C2440支持60个中断源(包含子中断源,不包括EINT8_23等里面的独立中断源,例如串口的发送中断、接收中断、错误中断属于串口的子中断源。); S3C6410支持64个中断源; S5PV210支持93个中断源; 1.2 中断控制器 1.3 中断处理 1)非向量方式(2440) 2)向量方式(6410/210) (对于向量方式,是直接进入中断函数(而不是跳转到中断程序总入口),因为中断函数(的地址)保存在相应寄存器里,根据相应中断源跳转
[单片机]
基于MC9328MX21的多功能开发平台设计
引言    在日益信息化的社会中,计算机和网络已经全面渗透到日常生活中。对于个人,需要的不仅仅是放在桌上处理的文档而是需要能够工作管理和生产控制的计算“机器”。而各种各样的新型嵌入式产品在应用数量上已远远超过通用计算机。小到MP3、PDA,大到网络家电、智能家电、车载电子设备等。在工业、服务、国防等领域,数字机床、智能工具、测试设备、监控设备等也正逐渐改变传统设计,朝着小型、便携、多功能方向发展。这里介绍一种基于ARM9系列微处理器MC9328MX21的多功能开发平台设计,该平台具有小型、低功耗、功能完善、方便操作等特点。    2 MC9328MX21的主要特性    ARM9系列微处理器MC9328MX21是基于ARM926EJ
[单片机]
基于MC9328MX21的多功能开发平台设计
U-boot-2014.04移植到MINI2440(7) nand flash datasheet及arm9控制寄存器分析
我的MINI2440上有一个256M的nand flash,后面我们需要从nand启动u-boot,然后引导加载内核,再挂载根文件系统,这里先对其做一个较为细致的认识。主要是硬件管脚定义,控制方式,处理器的控制寄存器对其做一个了解,因为现在市面上nand的用途比较广泛,数码相机,mp3都要使用,进入正题。 一.nand flash datasheeet 在移植好的u-boot下输入nand info会出现下面的信息: Device 0: NAND 256MiB 3,3V 8-bit, sector size 128 KiB 这说明nand大小为256M,工作电压3.3v,数据总线为8位,扇区大小为128K。首先我们
[单片机]
U-boot-2014.04移植到MINI2440(7) nand flash datasheet及<font color='red'>arm9</font>控制寄存器分析
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved