基于CAN 总线的网络化运动控制系统的研究

发布者:未来画家最新更新时间:2011-07-01 关键字:CAN  总线  网络化  运动控制系统 手机看文章 扫描二维码
随时随地手机看文章
  1 引言   
 
  运动控制系统是以机械运动的驱动设备—电动机为控制对象, 以控制器为核心, 以电力电子、功率变换装置为执行机构, 在自动控制理论指导下组成的电气传动控制系统。在电气时代, 电动机一直在现代化的生产和生活中起着十分重要的作用。在近年来, 由于半导体制造设备等相关的电子制造设备市场大幅成长, 而使得机器设备上的运动控制系统出现了以下几点技术需求:   
 
 
  (1) 多轴运动控制。机器设备因自动化程度提高而使得单一机器上所需要的轴数增多, 一台设备上十几轴是常见的事情。在轴数变多后, 如何协调各轴动作就是一个重要的课题。

(2) 体积要小。由于厂房空间的限制, 机器的体积要求越小越好, 机器内控制器的体积也就被要求愈来愈小, 相对的走线空间也愈来愈小。

(3) 要更精确。随着半导体制程已经精密到100nm 一下, 在制程及检测相关设备所要求的运动精度也要更精确, 其它如LCD 设备, SMD 制程设备也有相同要求。

(4) 要更稳定。因为所有设备的投资经费庞大, 系统停机的成本就更显的突出, 因此所有机器设备制造商都必须追求系统的稳定性。同时也必须考虑在组件损坏要维修时, 必须能快速替换且不出差错。

综合以上几点的需求分析可以看到, 既要在一个控制器内进行多轴运动控制, 又要控制器的体积更小, 配线和维修要更容易, 这些条件看来是相冲突的。可以这样说, 现场总线技术便是应这些新机器设备的需求而产生的。

2 现场总线运动控制系统通信特性   

用于运动控制的现场总线有两种通信控制策略: 事件触发和时间触发。事件触发中, 控制单元检测到事件发生后, 根据预定的算法计算出正确的应答, 然后将应答信息发送给数字伺服驱动器。从事件发生到应答信息的接收之间的延时必须是有限的, 也就是最大值必须是可知的, 它的值就是通信协议的实时性指标。但是, 事件触发中的事件是随机的、不可预知的, 所以导致现场总线通信的不确定性, 系统中的各个站点会争用传输介质,导致通信的冲突和不可靠, 很难保证高的实时性。事件触发通常是非周期性的, 使用非周期性数据传输实现最为简单, 但是也可以用周期性数据传输实现, 此时, 就必须标识哪个周期的数据为有效数据。

时间触发通常是周期性地进行的, 控制单元周期性地计算出控制数据, 然后及时发送控制数据给伺服驱动器。控制和通信是通过一个全局时钟进行驱动的, 系统的行为不仅在功能上得到确定, 而且在时间上也是确定的, 各站点不会争用传输媒介,整个系统是可靠的。时间触发控制中的通信周期时间应该等于控制周期时间, 或者通信周期时间能够被控制周期时间整除。周期性的时间触发中, 通信周期时间必须固定, 不能有明显的波动, 即数据传输必须有确定性, 也称为实时性。

总体而言, 用于运动控制的现场总线通信协议的性能要求有三点:   

(1) 可靠的通信, 以适合工业现场恶劣的环境;   

(2) 数据传输的实时性。周期性数据传输和非周期性数据传输都必须有很高的实时性, 响应时间通常为( 1~10) ms。

(3)命令执行和状态反馈的同步性。为了达到各坐标轴的同步运动精度, 需要各轴在收到命令值之后必须在同一时刻同时执行位置控制指令和同时采样当前位置, 发送给控制单元。

3 CAN 总线运动控制系统总体设计   

CAN 总线( Controller Area Network 控制局域网络) , 是一种普遍的应用。通过CAN 总线进行数据传输与控制, 使伺服电机的性能更加稳定, 能更好更灵活地地应用于运动控制系统中。

如图1 所示, 基于CAN 总线的运动控制系统与控制系统典型结构相比, 有两个显著的特点。第一是其控制对象为伺服运动控制对象, 第二是其网络化控制器包括CAN 总线通信媒介和CAN 控制器节点两部分。多个CAN 控制器节点通过CAN 总线通信媒介平行互联为一个单层结构的基于CAN 总线的伺服运动控制系统。当需要更多轴运动控制时, 只需要简单的再增加新运动控制节点, 把新的运动控制节点作为新的CAN 总线节点挂接到CAN 总线上就可以形成一个分布式多轴运动控制系统, 而且无需在硬件上对原有的运动控制节点做任何的修改。也可通过互联网关与IE( Industry Ethernet) 或Intranet/Internet 上下互联为一个多层结构的网络化伺服运动控制系统。

基于CAN 总线运动控制系统的设计, 主要工作在于对CAN 控制器节点的设计, 包括硬件和软件两部分。硬件设计, 主要在于选择合适的芯片和硬件电路分别设计图1 所示CAN 控制器节点的5 个基本组成部分, 即主控制器、主控制器与传感器⁄执行器的接口模块、主控制器与CAN 总线控制器的接口模块、CAN 总线控制器和CAN 总线收发器。软件设计, 主要工作在于选择合适的系统软件和应用开发软件分别设计各种接口驱动软件、系统管理软件和控制功能软件。

4 系统硬件设计   

主控制器笔者采用AT89C51 单片机作为处理核心, 采用PCA82C250 作为CAN 总线收发器, 图2 给出了基于SJA1000的CAN 总线系统电路图。为了增强抗干扰能力, SJA1000 的TX0 和RX0 引脚并没有直接和PCA82C250 的TXD, RXD 相连接, 而是通过高速光耦6N137 后与PCA82C250 相连, 这样可以实现总线上各CAN 节点之间的电气隔离, 光耦6N137 的两侧使用完全独立的两组电源VCC 和+5V。

SJA1000 与单片机的接口比较简单, AD0~AD7 直接连接到AT89C51 的P0 端口, RD、WR 和ALE 信号也直接和AT89C51的相应引脚进行连接, MODE 接+5V 设置SJA100 控制器为Interl模式。SJA1000 的片选信号CS 由AT89C51 的P2.0 决定, 因此系统中SJA1000 的寻址空间从地址0 开始, 可以使用此地址加上SJA1000 内部寄存器地址的偏移量来访问SJA1000 内部RAM空间。SJA1000 的中断输出信号INT 与AT89C51 的INT0引脚相连, 以便AT89C51 以中断方式或查询方式对报文收发作出响应。

5 系统程序设计   

基于SJA1000 的CAN 总线建立通信的过程包括系统初始化、接收和发送。

5.1 SJA1000 的初始化程序   

AT89C51 在上电后首先运行其自身的复位程序, 并在此后调用SJA1000 的配置程序。配置程序在设置SJA1000 的寄存器前, 必须通过读复位模式⁄请求标志来检查SJA1000 是否已处于复位模式, 因为要写入配置信息的寄存器仅在复位模式下可以被写入。初始化程序中, 首先将SJA1000 设为复位状态, 随后定SJA1000 使用PeliCAN 模式, CLKOUT 引脚输出频率为外接晶振频率的1/2, 为单验收滤波器模式。

SJA1000 的初始化流程( 图略) 。

在清除SJA1000 的复位模式⁄请求标志进入工作模式时,必须先检查标志是否确实被清除、是否进入了工作模式后, 才能进行下一步的操作。在进入工作模式后, CAN 控制器的中断可被使能, 并开始正常的发送或接收报文。

5.2 SJA1000 的报文发送接收   

根据CAN 协议规范, 报文的传输由CAN 控制器SJA1000独立完成。在报文的发送过程中, 单片机AT89C51 必须将要发送的报文送入系统发送缓冲区, 在将系统发送缓冲区中的数据移至CAN 控制器发送缓冲器之前, 必须判断发送缓冲器是否被释放。

报文的接收由CAN 控制器SJA1000 独立完成, 收到的报文在接收缓冲器内, 同时将状态寄存器的接收缓冲器状态标志RBS 和接收中断标志RI 置位。如果报文接收被使能, 单片机可以将接收缓冲器内的新报文读出, 并存储到单片机的内存单元或外部数据存储器中, 然后释放接收缓冲器。SJA1000 报文接收过程可以由SJA1000 的中断请求或查询SJA1000 的控制段状态标志来控制。

6 小结   

分析传统的运动控制系统已不满足电子制造设备的要求和现场总线运动控制系统通信特性, 提出了基于SJA1000 的CAN总线的网络化运动控制系统方案, 为交流伺服的网络化研究和应用作出了一次有益的新探索。CAN 总线可以很好地满足现场总线运动控制系统对实时响应的较高要求, 同时使用CAN 总线还使得系统具有很好的扩展性能。这样为向多轴或多点的分布式运动控制网络发展打下坚实的基础。

关键字:CAN  总线  网络化  运动控制系统 引用地址:基于CAN 总线的网络化运动控制系统的研究

上一篇:利用PC串口进行脉冲编码通讯的方法
下一篇:基于CAN总线的数据采集人机界面设计

推荐阅读最新更新时间:2024-05-02 21:27

【Taycan深度解析系列2】 800V电池对应的设计细节
在Taycan 的设计中,800V 的电池系统有哪些设计细节值得我们仔细去剖析,这里面有以下的一些内容值得我们仔细看一下,以下内容主要分为高压电气布置充电管理和 CMU 的设计两部分。结构上,这个电池包的结构矿体是通过挤压铝型材来做的,底部采用了抗石击胶,电池底部的可以更换冲击保护层。 图 1 Taycan 动力电池系统的部件介绍 01. 高压电气布置和能量管理 首先这个电池的连接排布挺特别的,电池模组的排号是按照顺序进行考虑,以一个最小的环路设计来考虑的: 1) 从 1-13 号模组,上下 4 个模组形成一个小回路形成 3 个组 2) 14-26 的排布就没有太多规律而言 3) 2
[汽车电子]
【Tay<font color='red'>can</font>深度解析系列2】 800V电池对应的设计细节
详细解析:汽车内的电子系统“CAN-BUS”
  这篇文章算是 技术 文,小编我给大家一点一点讲解什么是"CAN-BUS系统"及它的作用。   举例: 以前车子的电路系统有点像家庭用电,要有电力与插头来供应电器用品用电,只要哪个东西不会动作,那不是电器用品坏了就是插头没送电过来,故障很好判断不是一就是二,但是所需要的线路繁多又会消耗不必要的电力。   详解: 控制器局域网(controllerareanetwork 简称CAN)现今汽车电路很多都走"CAN-BUS系统",它是1993年SAAB开始启用的新控制系统,目前大部分欧洲车系车种都是用CAN-BUS,而日系车种2002年以后陆续也有车子改使用CAN-BUS系统,TOYOTA、LEXUS车系200
[汽车电子]
详细解析:汽车内的电子系统“<font color='red'>CAN</font>-BUS”
STM32之CAN总线原理
简介: CAN是Controller Area Network 的缩写(以下称为CAN),是ISO国际标准化的串行通信协议。由德国电气商博世公司在1986年率先提出。此后,CAN通过ISO11898及ISO11519进行了标准化。现在在欧洲已是汽车网络的标准协议。 CAN协议经过ISO标准化后有两个标准:ISO11898标准和ISO11519-2标准。其中ISO11898是针对通信速率为125Kbps~1Mbps的高速通信标准,而ISO11519-2是针对通信速率为125Kbps以下的低速通信标准。 CAN具有很高的可靠性,广泛应用于:汽车电子、工业自动化、船舶、医疗设备、工业设备等方面。 特点: 多主控制。总线空闲
[单片机]
STM32之<font color='red'>CAN</font><font color='red'>总线</font>原理
can总线相关知识
1、can 是controller area network的简称 2、can总线具有以下特点:   A、较低的成本与极高的总线利用率;  B、 数据传输距离可长达10Km,传输速率可高达1Mbit/s;  C、可靠的错误处理和检错机制,发送的信息遭到破坏后可自动重发;  D、节点在错误严重的情况下具有自动退出总线的功能;  E、报文不包含源地址或目标地址仅用标志符来指示功能信息和优先级信息; 3、较之目前许多RS-485基于R线构建的分布式控制系统而言,基于CAN总线的分布式控制系统在以下方面具有明显的优越性:     首先,CAN控制器工作于多主方式,网络中的各节点都可根据总线访问优先权(取决于报文标识符)采用无损结构的逐位
[嵌入式]
使用示波器CAN-dbc字符触发和解码更快速地完成汽车设计调试
差分控制器局域网(CAN)总线广泛应用于当前汽车的传动系统和车身控制中。CAN 总线是由 Bosch 公司在 30 多年前开发的一种通信协议,一直被视为汽车的“主力”串行控制总线。CAN 总线同时也在工业和医疗设备控制应用中得到了大量应用。 示波器作为最重要的测量工具,目前广泛用于汽车串行总线物理层的测试和调试。尽管 CAN 总线协议分析仪(例如 Vector 的 CAN 分析仪)非常适合测试和调试总线数据在更高协议层级别上的传输,示波器的优势在于它允许您监测 CAN 总线物理层的模拟信号质量(即信号完整性)。汽车自身的电气环境非常不理想,伴有大量噪声和意外瞬变。示波器的核心竞争力在于,它能够捕获和显示罕见汽车瞬变和噪声的细节
[测试测量]
使用示波器<font color='red'>CAN</font>-dbc字符触发和解码更快速地完成汽车设计调试
CAN/RS232接口卡的设计及实现方法
CAN/RS232接口卡的设计及实现方法 控制器局域网(Controller Area Network,CAN)属于现场总线的范畴,其总线规范已被ISO国际标准化组织制定为国际标准,并被公认为是最有前途的现场总线之一。CAN总线广泛应用于控制系统中的各检测和执行机构之间的数据通信。因为CAN总线数据的传输和处理都由节点的单片机完成。这样就使设计者和观察者没有办法以比较直观的方式掌握总线的运行情况。 现在市场上主要有两种CAN的接口卡,使用PCI总线和使用USB接口。前者具有传输速度快的特点,但却要占用一个计算机的插槽,并且设计上十分困难;后者的传输速度也很快,且价格较便宜,但要花费很大的精力进行USB的固件开发和维护,并要编写
[模拟电子]
<font color='red'>CAN</font>/RS232接口卡的设计及实现方法
安全总线系统在汽车行业的应用
现场总线是一种已被大家所熟知和广泛使用的比较成熟的控制系统技术。而刚刚起步的“安全现场总线”技术则是在现有“标准现场总线”的基础上发展起来的具有安全总线协议的新型的安全控制系统技术。 一直以来,安全控制技术一直落后于标准的控制技术。为了说明这一点,让我们回顾一下几十年来自动化控制系统的发展历程。30年前,几乎所有的控制系统都采用继电器控制方式,但这种方式安装和维护的成本较高,且重新配置系统比较麻烦,非常不灵活。基于这些原因,PLC及其他一些比较“智能”的控制技术就逐步取代了继电器控制方式,因为PLC减少了硬件配置,简化了安装和维护过程,且能非常灵活地适应以生产过程为本的控制任务。随着生产规模的进一补扩大和生产技术的不断进步,控
[嵌入式]
DS2438及其在单总线微网中的应用
摘要:介绍内部集成多种功能部件的单总线器件DS2438,利用该器件内部丰富的硬件资源,可构成具有环境温度及单总线供电电压补偿功能的单总线数据采集系统;介绍器件性能特点、内部结构及工作原理,并给出该器件在单总线微网中的具体应用实例。 关键词:单总线微网 测控系统 单片机 传感器 1 概述 在数字化测控系统中,由于单总线微网仅使用1根导线进行双向数据传送,并同时为远端器件提供电源,既降低了测控系统的硬件成本,又提高了系统的可靠性,因而是有着广泛应用前景的现场总线技术。但是,由于单总线微网一方面要传送数据,另一方面还要向单总线器件提供电源,这必然造成单总线上供电电源电压的波动;而测控系统中所使用的传感器元件,其输出值不仅正比于被
[单片机]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved