采用直接PCF方法实现的电机控制解决方案

发布者:创意火花最新更新时间:2011-09-27 关键字:功率因数校正  直接PCF  数字信号控制器  PI控制 手机看文章 扫描二维码
随时随地手机看文章

  当IEC31000-3-2在2001年变成强制标准时,很多公司开始在设计中考虑采用功率因数校正(PFC),这些产品包括照明设备、便携式工具、所有的电子设备、消费产品、家用电器和工业设备等。该标准克服了注入公用主供电系统的谐波电流限制,适用于每相位拥有高达16A的输入电流的电气及电子设备,其目的是连接公用低压配电系统。

  如果不采用PFC,那么典型开关模式电源的功率因数约为0.6,因而会有相当大的奇次谐波失真(第三谐波有时和基本谐波一样大)。令功率因数小于1以及来自峰值负载的谐波减少了运行设备可用的实际功率。为运行这些低效率设备,电力公司必须提供额外的功率来弥补损耗。功率的增加将导致电力公司使用负载更重的供电线路或遭受中性导线烧坏的威胁。PFC的使用每年都在增加,特别是在很多公司共享市场的激烈竞争环境中。

  PFC主要分为两大类:有源和无源。无源PFC较便宜,但很难针对可变输入电压和可变负荷进行设计。无源PFC电路较简单,比有源PFC的组件更少,适合低于200W、仅有一个输入电压的低功率应用,因为这些应用的感应器和电容器很小且便宜。

  对于功率较高的应用,它们的感应器和电容器更大、更昂贵,因此,有源PFC就成为一种更经济高效的方法。无源PFC适合低功率、固定电压、固定负荷的应用。有源PFC则适用于中高功率需求的应用,例如PC电源、UPS、电信设备和等离子显示屏,在这些应用中,无源PFC无法满足系统要求(SMPS、HF镇流器、转换器、电池充电器等)。

  另外两种方案是模拟和数字PFC。传统的模拟PFC控制器可提供多种控制算法,所需的额外组件较少。数字PFC可提供可比性结果,但更动态的PFC能够提供更优的性能且更易于修改。

  本文描述了飞思卡尔MC56F8013数字信号控制器(DSC)上面向PFC的平均电流模式控制。除了节省功率和满足电流标准外,采用PFC还有其它各种原因。PFC可以减少谐波失真,谐波失真可能导致发电设备中的工作温度升高,而较高的温度又可能缩短旋转机器、电缆、变压器、电容器、保险丝、开关触点和电涌抑制器等设备的使用寿命。谐波还会造成电容器和电缆上额外电介质应力,使得机械绕组和变压器的电流以及众多产品的噪音排放提高。这些问题还可能引发集肤效应,带来电缆、变压器和旋转机器中的问题。所有这些因素都会影响电气设备的可靠性、性能和老化速度。

  尽管本文中描述的应用是面向MC56F8013 DSC的,但根据应用要求,也可以采用MC56F80xx系列的其它成员。本文中介绍的实现方案是一种全数字解决方案。快速电流和低压回路采用DSC进行数字实现,PFC电源开关直接由DSC PWM输出控制,因此,该方案被称为直接PFC。直接PFC算法在平均电流控制持续传导模式(CCM)下工作。

  采用直接控制方法比间接解决方案需要更多的DSC资源,其中,PWM由外部硬件电路生成。另一方面,采用直接控制可以生成来自线路的纯电流正弦波,并在输入处获得理想的电阻负荷值。直接PFC的另外一个优势是具有恒定晶体管交换频率,从而可以减少噪音。

  采用直接PFC可以实现更好的系统动力学,因为这种控制算法简单、快速。此外,不需要来自线路电压的同步信号,比间接PFC需要的无源组件更少。该方案非常经济高效,适合于中(200~600W)、高功率(600W以上)应用。DSC的高性能使得PFC和电机控制应用可以并行运作。本文描述了采用单旁路电流传感的三相交流感应矢量控制驱动的PFC方案。

  升压转换器作为主动功率因数校正前置调节器被广泛采用。控制结构分为两条回路:内部电流控制回路和外部电压控制回路(如图所示)。外部电压控制回路通过DSC中的软件实现,在DC总线上保持恒定电压。电压控制回路采用比例-积分(PI)控制器,输出定义PFC电流所需的幅度。PFC控制算法提供正弦曲线输入电流,不需要通过DSC控制的专用PFC硬件,向相位转移到输入电压。硬件集成了输入整流桥DB、PFC电感L、PFC二极管D和PFC开关Q。这些模拟数值就是经传感整流的(sensed-rectified)输入电压、输入电流DC总线电压。输入电流用PFC开关进行控制,以达到理想输入电流和理想DC总线电压水平(UREQ)。


  内部电流回路和外部回路一样,也通过软件实现,它采用PI控制器通过直接控制PFC晶体管来保持正弦曲线输入电流。PI控制器的输入是基准电流、IREQ和实际电流、IL之间的差值。IREQ的正弦曲线波形源自输入电压UDC RECT的波形(如图所示)。将经整流的输入电压波形与电压控制器的输出相乘,获得最终基准电流IREQ。电流PI控制器的输出生成信号D,与开放回路中升压转换器的占空比相对应。电流PI控制器的带宽必须设置在8KHz以上,才能获得足够的响应。因此,电流PI控制器算法必须至少每60μs执行一次,这对DSC的性能提出了较低限制要求。电压控制回路的DSC性能要求很低,这是因为电压控制回路的带宽被设置在20Hz以下。因此,这部分PFC算法对DSC性能没有太高的要求限制。

  专用PFC硬件被设计为整个系统的一部分。PFC主板连同功率级和控制器主板构成了一个紧凑的系统来驱动三相AC/BLDC电机(包括PFC控制)。

  该应用符合以下性能规范:

  硬件:MC56F8013/23控制器主板,PFC主板,三相AC/BLDC高压功率级主板。
  控制方法:内部电流回路,外部电压回路,基准电流生成,RMS输入电压计算。
  FreeMASTER软件监视器。
  出错保护:DC总线过压及电压,过流保护,输入电压过压及欠压。

  功率因数校正应用通过控制PFC开关提供正弦曲线输入电流。在控制回路中,将实际的DC总线电压与期望电压值进行比较。控制误差由PI控制器处理,后者生成基准电流的振幅。输入整流电压乘以输入整流RMS电压和电压控制器的输出。相乘后得到的值是基准电流,与分流电阻器上感应到的实际电流进行比较得到它们之间的差值,然后在PI电流控制器中进行处理。该控制器的输出是QuadTimer1的PWM信号,该信号直接开关PFC晶体管。

  整个应用由MC56F8013 DSC控制。这种低成本数字信号控制器为这类应用提供了很多重要功能和外设。QuadTimer和模数转换器(ADC)是这一应用中最重要的外设。ADC被用于传感模拟数值,QuadTimer被用于对控制算法定时、ADC取样同步和控制信号生成。

  整个PFC算法采用由QuadTimer1(QT1)生成的一种中断程序来实现,该程序每31.25μs调用一次,对应的频率为32KHz。这一频率足以生成正确的电流波形,但不会给DSC内核加载超过必要部分的电流。电流回路在每次中断时执行,电流控制器采用递归算法以便快速实现。QuadTimer2(QT2)被用作A/D转换器B和QT1生成的PWM信号之间的同步信号。A/D转换器B同步信号(扫描开始)在on-time PWM信号的中点执行,以测量平均感应电流。ADC利用A/D转换器B按照某种顺序读取输入电路和输入电压,并使用A/D转换器A按照另一种顺序转换输出电压。输入电流每个QT1中断(即31.25μs)传感一次,输入电压和输出电压则每四个QT1中断(即125μs)传感一次。

  所有数值在占空周期的中点进行传感。采用10Hz低通滤波器过滤输入电压,可以获得RMS输入电压。PFC晶体管的交换频率设置为32KHz,这种恒定的开关频率简化了输入滤波器的设计。电流控制器的结果定义PFC晶体管的占空比。

  PFC可以作为以AC电源为电源的各个系统的一部分。电机控制应用采用交流电感应电机和测速发电机。如果希望使用带编码器传感器的电机,那么MC56F8013设备没有足够的定时器信道支持编码器处理。用户可能需要使用带更多定时器的器件,例如MC56F8037 DSC。从MC56F8013到MC56F8037的软件移植非常容易。

  系统由三个主板组成:功率因数校正主板、三相AC/BLDC高压功率器件主板和MC56F8013/23控制器主板。硬件和软件实现如下所述:实施ACIM控制不需要任何其他硬件。配置和独立PFC目的的配置相同,必须连接适当电机。

  应用软件是实时运行的中断驱动型软件。有三种周期性中断服务程序执行主要的电机控制和PFC任务:定时器3中断服务程序执行快速电流控制回路和PFC任务,在读取第三个DC总线电流样本时(125μs间隔)执行;PWM重载中断服务程序执行快速电流控制回路和PFC任务,在每次PWM半重载时(31.25μs间隔)执行;ADC信道A终止扫描中断服务程序读取DC总线电流样本,当一个PWM循环中出现三个连续样本读数时执行。

  此外,还有非周期性中断服务程序。PWM故障中断服务程序在过流事件发生时执行,以管理过流故障情况。只有在出现故障情况时才执行该程序。

  后台回路在应用电源线上执行。它管理非关键性的时间任务,如应用状态机和FreeMASTER通信轮询。

  PWM模块被配置为以中央对齐(center-aligned)模式运行。PWM_half_reload_sync信号在每个PWM半循环(31.25μs间隔)时生成。PWM_half_reload_sync被连接到定时器模块。定时器信道3的输出用于触发ADC信道A。PWM模块、TMR模块和ADC模块间的连接链路能够定义ADC取样的多个确定的时间瞬间,这与生成的PWM信号同步。

  ADC信道A在31.25μs后第三次启动,第三个DC总线电流样本被读取。同时,定时器3中断执行。在已经读取了第三个电流样本后,定时器3 ISR被中断,ADC信道A终止扫描ISR执行。当该ISR完成后,定时器3 ISR继续进行处理。

  快速电流控制回路在PWM重载ISR中执行,后者与PWM_half_reload_sync信号同步。在PWM重载ISR被执行之前,提取DC总线电流的三个ADC样本,并由ADC信道A终止扫描ISR进行处理。

  在满载时要测量独立PFC是否符合国际标准IEC61000-3-2的要求。总谐波失真(THD)为4.5%,功率因数(PF)为0.99。

  PFC组件的额定功率与功率器件主板额定功率(750W)相同。PFC还要作为一种负载与AC感应电机一起测试。虽然满足电流限制,但THD的值较大,而PF的值较小。这是因为PFC是针对750W设计的。要获得更好的结果,应根据所选电机的额定功率重新设计组件。

  在这种特殊的实现中(带有单旁路电流传感的三相AC感应矢量控制驱动),采用了一个用于速度传感的测速发电机。利用MC56F8037 DSC进行设计将不需要测速发电机,这要归功于定时器数量的增加。在某些情况下,可能要求使用编码器进行速度传感。

关键字:功率因数校正  直接PCF  数字信号控制器  PI控制 引用地址:采用直接PCF方法实现的电机控制解决方案

上一篇:工业应用中传感器数字I/O模块的选择
下一篇:基于IP网络的“软切换”视频联网监控技术

推荐阅读最新更新时间:2024-05-02 21:37

详解单相逆变器重复控制与模糊PI控制相结合
1.引言 UPS通常用在对电源质量要求很高的场合,如金融部门、医疗中心、通信系统、军用设备等。一般要求UPS的输出波形质量好,动态响应快,抗扰能力强。近年来,中外学者发展出了多种逆变电源波形控制技术:PID控制,无差拍控制,滑模变结构控制,重复控制,模糊控制等。各种控制方法均具有各自的特点,表现出优良的特性和不足。本文针对UPS逆变电源波形不能兼顾稳态效果和动态效果的问题,建立了 单相 逆变器 的数学模型,提出了基于重复控制和模糊PI控制相结合的新型控制策略。利用重复控制消除 逆变器 周期性干扰,提高其稳态精度,利用模糊PI控制改善 逆变器 对非周期扰动的瞬态响应速度。实验结果表明,基于该控制器控制的UPS输出波形质量好,稳态精
[电源管理]
详解单相逆变器重复<font color='red'>控制</font>与模糊<font color='red'>PI</font><font color='red'>控制</font>相结合
一种小功率单级功率因数校正电路
摘要:讨论一种单级功率因数校正电路的原理,并分析其实验结果。 关键词:单级功率因数   A Low Power Single- stage Converter to Improve Power Factor Abstract: The paper introduces the operating principle of a low power single- stage converter to improve power factor, analyses the result of experiment. Keywords:Single- stage Power factor 1引言   对于较小功率的变换器,若
[电源管理]
一种小功率单级<font color='red'>功率因数校正</font>电路
飞思卡尔推出MC56F827xx系列数字信号控制器
飞思卡尔最新数字信号控制器提供同类最佳性能和功效,数字信号控制器旨在支持绿色数字电源和电机控制应用 2013年11月5日,德克萨斯州奥斯汀讯 – 飞思卡尔半导体 (NYSE:FSL)日前推出MC56F827xx系列数字信号控制器,它具有同类最佳的性能和功效。这一全新系列旨在应对从模拟到数字技术日益增长的过渡,以适应功率转换和先进的电机控制应用。 与同类竞争解决方案相比,MC56F827xx系列数字信号控制器消耗的电量降低了48%。因为全新的飞思卡尔数字信号控制器能够以极高的效率运行系统,而不会由于过量功耗浪费能源,它们非常适合电信/服务器电源、太阳能逆变器、无线充电、感应烹饪和照明等绿色应用。 这些通常以极高开关频率运行的处理
[嵌入式]
5W可调光带功率因数校正的LED驱动器设计
   一、电路特点描述   RD-251在12 V和18 V的 LED灯 串电压下可提供350 mA单路恒流输出。使用标准的AC市电 可控硅 调光器可将输出电流降低至1% (3 mA),这不会造成 LED 负载性能不稳或发生闪烁。该电路可同时兼容低成本的前沿调光器和更复杂的后沿调光器。   该电路用于在通用AC输入电压范围内(85 VAC至265 VAC,47 Hz至63 Hz)进行工作,但在0 VAC至300 VAC的输入电压范围内也不会造成损坏。这样可以提升现场应用可靠性,延长在线电压跌落和浪涌条件下的使用寿命。基于LinkSwitch-PL的设计可提供高 功率 因数( 0.9),有助于满足所有现行国际标准的要求,可使单
[电源管理]
5W可调光带<font color='red'>功率因数校正</font>的LED驱动器设计
基于dsPIC30F6014数字信号控制器的CAN节点设计
引言 CAN,全称为“Controller Area Network”,即控制器局域网,是国际上应用最广泛的现场总线之一。作为一种技术先进、可靠性高、功能完善、成本合理的远程网络通讯控制方式,CAN-bus已被广泛应用到各个自动化控制系统中,具有不可比拟的优越性。 新型16位dsPIC30F6014数字信号控制器结合单片机的控制优点及数字信号处理器(DSP)的高速运算特性,为嵌入式系统提供了单一芯片解决方案。 本篇论文以CAN协议为基础,结合dsPIC30F6014的突出性能,在设计通讯接口过程中,提出了基于dsPIC30F6014数字信号控制器的CAN节点设计方法。 1 dsPIC30F6014数字信号控
[单片机]
基于dsPIC30F6014<font color='red'>数字信号</font><font color='red'>控制器</font>的CAN节点设计
有源功率因数校正技术及发展趋势
O 引言 传统的用于 电子 设备前端的 二极管 整流器,作为一个谐波 电流 源,干扰电网线 电压 ,产生向四周辐射和沿导线传播的电磁干扰,导致 电源 的利用效率下降。近几年来,为了符合国际电工委员会61000-3-2的谐波准则,功率因数校正 电路 正越来越引起人们的注意。 功率因数校正技术从早期的无源电路发展到现在的有源电路;从传统的线性控制方法发展到非线性控制方法,新的拓扑和技术不断涌现。本文归纳和总结了现在有源功率因数校正的主要技术和发展趋势。   1 功率因数(PF)的定义 功率因数(PF)是指交流输入有功功率(P)与输入视在功率(S)的比值。即   式中:I1为输
[电源管理]
有源<font color='red'>功率因数校正</font>技术及发展趋势
飞思卡尔最新数字信号控制器提供低功耗和高性能
随着全球对环保设施和工业设备的需求日益增长,制造商正在寻找新途径来提高能源效率同时降低系统成本。为了满足这些需求,飞思卡尔已经推出了一系列数字信号控制器(DSC),旨在以极具竞争力的价格提供节能的电机控制。 新的MC56F8006系列是嵌入式市场已有的最节能的DSC系列之一,也是最经济高效的DSC产品,有助于降低开发费用和能耗,适合各种电机控制和电机驱动应用,包括设备。DSC提供的先进的电机控制和能耗转换功能可以显著提高设备的效率和可靠性,并节约能源。例如,DSC数字控制的洗衣机的电机能够更有效地支持搅拌旋转,从而节约用水,缩短自旋周期,减少甩干时间,节约能耗。 MC56F8006 DSC用一套灵活的外设,它
[嵌入式]
改进的单级功率因数校正AC/DC变换器的拓扑综述
  1 概述   为了减小对交流电网的谐波污染,国内外都制订了限制电流谐波的有关标准(如IEC1000-3-2)。因此,要求交流输入电源必须采取措施降低电流谐波含量,提高功率因数。目前广泛采用的有源功率因数校正方法有两种,即两级PFC和单级PFC。两级PFC方案 如图1所示,将PFC级输出端与DC/DC变换器相串联,两级控制电路相互独立。   PFC级使输入电流跟随输入电压,使输入电流正弦化,提高功率因数,减少谐波含量。后接的DC/DC级实现输出电压的快速调节。由于采用两级结构,电路复杂,装置费用高,效率低。在小功率应用场合,两级PFC很不适用。因此,研究单级PFC及变换技术成为电力电子领域中的一项重要课题。   
[电源管理]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved