IEEE1394总线的高速网络通信系统设计

发布者:brian808090最新更新时间:2011-09-28 关键字:IEEE1394总  网络通信 手机看文章 扫描二维码
随时随地手机看文章

  引言

  IEEE1394作为一种高性能的串行总线技术,具有数据传输速率高、支持异步和等时传输、点对点连接、可热插拔、线缆提供电源等优点[1]。多台设备可以通过树状或菊*链状拓扑连接到网络中,并共享总线传输带宽。虽然IEEE1394a协议相对比较复杂,但功耗较低,数据传输更加稳定,组网方便(无需路由器)[2]。IEEE1394已经在高速通信中表现出了优异的数据传输性能,并可确保数据传输的安全性和可靠性。

  1  系统方案

  IEEE1394高速网络通信系统采用树状拓扑结构来构建网络,通过软件将主控计算机上的1394节点设为根节点,其他设备上的1394节点设为叶节点,目的是使主控计算机能对整个网络进行控制和监管。组建好的网络拓扑结构如图1所示。


图1  高速网络通信系统拓扑结构图

  在图1中,根节点与叶节点之间、叶节点与叶节点之间都采用IEEE1394a标准线缆连接。本网络中根节点下有两棵树,它们都在同一条总线Bus0上。不在一棵树上的1394节点也可位于同一个设备上,如Node1、Node2和Node5都在同一个设备上。

  2  硬件设计

  主控计算机上的1394节点采用PowerPC作为通信和数据处理的核心。采用PowerPC的原因是它的体系结构是开放的,而且PowerPC在大数据量、高速信号处理中具有强大的优势和很好的应用潜力。由于大多数PC机上都具有PCI接口,PCI总线应用广泛,PCI接口驱动的通用性较强,所以主控计算机与PowerPC可通过主控计算机上的PCI接口进行通信,这就简化了在主控计算机上开发PCI接口驱动的工作。而IEEE 1394接口采用双接口芯片设计,并配备了SDRAM作为大容量数据缓冲,用Flash来存放软件。1394节点都是通过1394总线连接的。主控计算机上的1394节点(已设为根节点)通过1394总线与网络中其他某个设备上的1394节点(已设为叶节点)相连的整体框图如图2所示。左侧为根节点架构,右侧为叶节点架构。叶节点的架构与根节点的架构是类似的,但由于只有根节点与主控计算机连接,而叶节点不与主控计算机相连,所以叶节点并不需要PCI总线。


图2  主控计算机上的1394节点架构

  IEEE1394接口采用的是链路层芯片TSB12LV32和物理层芯片TSB41AB3。TSB41AB3是支持3个线缆接口的物理层芯片。TSB12LV32是一款支持IEEE1394a总线标准的高性能通用链路层芯片,最高传输速率为400 Mb/s[5],本网络可采100 Mb/s、200 Mb/s、400 Mb/s来进行数据的传输。TSB12LV32为后端提供了主机接口,系统中PowerPC采用主机接口完成寄存器的配置和异步流包的传输。TSB12LV32还为PowerPC提供了中断输出INT和可编程状态STAT[0:2],用于总线复位、传输错误和内部FIFO状态指示。

  对于数据的收发,采用DMA来进行数据的搬运而完成。通过中断机制来把收到消息事件报告给核心处理器PowerPC,由处理器对消息进行处理。


图3  软件层次图

  3  软件设计

  根据软件要实现的功能,可把软件划分为3个层次,如图3所示。

  3.1  1394内核软件

  对1394内核的物理层和链路层寄存器进行配置,对OHCI、总线管理器配置等[3],并对这些内核函数进行了封装。这种隔离的好处是可使用户不必关心底层硬件,只需调用内核函数就可开发出用户软件。通过建立结构体来将这些函数进行分类、链接,驱动软件在调用内核函数时可通过结构体来直接找到相应的内核函数,从而进行调用,这样就把1394内核软件和上层驱动链接了起来。

  3.2  驱动软件

  由于1394协议支持异步传输和等时传输,且为了保证传输的可靠性,故采用异步流包进行数据的传输。对于发送,驱动软件先根据异步流包的格式,对通信软件中的消息进行组帧打包,然后调用内核函数进行发送。对于接收,是利用中断机制来接收消息的。

  3.3  通信软件

  上电后,1394总线上首先会出现持续125 μs左右的总线复位(bus reset)状态,之后进行树标识和自标识工作。树标识进程定义了总线的拓扑结构。树标识之前,每一1394节点都知道自己和其他的节点相连,此过程过后,整个网络的拓扑就形成了,设置计算机为根节点(root),其他的节点为分支节点。树标识后是自标识进程,自标识通过根节点发送自标识授权信号和节点返回自标识数据包来完成,其实现的功能主要有:为每个节点分配物理标识,相邻节点交换传输速度信息,将树标识进程定义的拓扑在整个网络中广播。

  根据内核函数,对整个通信网络进行初始化,包括初始化PCI总线init_pci()、初始化1394设备init_1394dev()、树标识和自标识、主控机上的1394节点设为根节点(叶节点不进行此步)、初始化中断等。

  初始化完毕后,首先挂接中断服务程序。然后根节点采用发送STOF包来进行网络同步,即以发送STOF包作为一帧的开始,叶节点收到STOF包后立即与整个网络同步。对于发送过程,通信软件把要发送的消息传递给驱动软件,进行发送。对于接收过程,若接收到新消息,就会报中断给处理器,并根据中断号进入相应的中断服务程序,中断服务程序就会置标志位,通知通信软件中的接收函数把接收到的消息进行处理。

  结语

  结合高速网络通信系统的通信要求,自行设计的网络通信系统完成了网络中主控计算机与网络之间、根节点与叶节点之间、叶节点与叶节点之间的通信,实验表明,系统通信良好。由于此网络遵循IEEE1394标准,所以可应用于家庭数字化网络、车载信息系统、工业自动化系统等[4]。随着IEEE1394技术的不断发展,其应用也从商用向更多领域扩展。

关键字:IEEE1394总  网络通信 引用地址:IEEE1394总线的高速网络通信系统设计

上一篇:基于LAN91C111的嵌入式以太网接口设计
下一篇:一种PCI总线ARINC429通信卡实现方法

推荐阅读最新更新时间:2024-05-02 21:37

基于无线通信技术的智能公交系统设计
引言 公共交通具有个体交通无法比拟的强大优势,优先发展城市公共交通系统是解决大、中城市交通问题的最佳途径。近年来, 城市公交系统的智能化已成为公共交通研究领域的主要方向。国内现有试运行的智能公交系统大部分都采用GPS全球定位系统进行定位, 同时采用GPRS网络进行数据传输。车载GPS模块可以实时获取位置、方向、时间等导航定位数据, 然后通过车载GPRS模块将数据传至监控中心, 从而实现车辆的定位和监控。监控中心则可将车辆的实时信息或公告信息通过电子站牌的GPRS模块发送给电子站牌,以估算到站时间和距离, 然后显示在电子站牌上。尽管现有试运行的智能公交系统定位覆盖面广、精度高, 可以实现车辆的全范围定位和监控。但在实际运行过程中
[嵌入式]
IEEE1394总线的网络通信系统设计方案
  IEEE1394作为一种高性能的串行总线技术,具有数据传输速率高、支持异步和等时传输、点对点连接、可热插拔、线缆提供电源等优点 。多台设备可以通过树状或菊*链状拓扑连接到网络中,并共享总线传输带宽。虽然IEEE1394a协议相对比较复杂,但功耗较低,数据传输更加稳定,组网方便(无需路由器) 。IEEE1394已经在高速通信中表现出了优异的数据传输性能,并可确保数据传输的安全性和可靠性。   1 系统方案   IEEE1394高速网络通信系统采用树状拓扑结构来构建网络,通过软件将主控计算机上的1394节点设为根节点,其他设备上的1394节点设为叶节点,目的是使主控计算机能对整个网络进行控制和监管。组建好的网络拓扑结构如图
[网络通信]
分析仪器CAN网络通信设计
  基于单片机(80C196)或微处理器(DSP、ARM 等)的多组分气体分析仪采用功能强大的CPU,可实时快速测定各种燃烧设备的各项热工参数。根据测量数据,通过自动调节装置调整风量,保持适当的空气/燃料比,使燃料系统达到最佳运行状态,以获得最高的燃烧效率和最低的燃料消耗。仪器还可以测定CO、SO2、NO、NO2、烟气黑度等参数,并配有液晶屏、键盘等外设。   CAN(CONtroll Area Network)是国际上应用最广泛的现场总线之一,使用了一种串行多控制方通信协议,可以有效地支持分布式实时控制,并且具有很高的安全性和高达1Mbps的通信速率。   一个包含PC 机和n-1(n≤110)个智能节点的CAN 总线网络结
[单片机]
分析仪器CAN<font color='red'>网络通信</font>设计
基于Winsock实现PLC网络通信控制设计方法
  在工业控制中,用PLC控制的工程在上/下位机通讯上一般采用RS-232/RS-485串口通讯,这种方法对于数据量较大,通讯距离较远,实时性要求高的控制系统,很难满足通讯需要。   近年来随着计算机网络技术的飞速发展,网络化数控已经成为现代制造业发展的必然趋势, 控制系统正向虚拟化、网络化、集成化、分布化和节点智能化的方向发展。 许多大型PLC厂商生产的PLC都配备了相应的以太网通信模块,本文讨论了OMRON PLC的以太网通信体系结构,并以CP1H PLC的ENT2l以太网模块为例实现与计算机的通信。    1. Winsock网络通信控件   Winsock控件是不可视控件,使编程人员开发客户/服务器应用程序时,不必
[嵌入式]
基于Winsock实现PLC<font color='red'>网络通信</font>控制设计方法
以ADSP2BF537为核心的网络通信模块的设计
1 引言 近年来,太阳能光伏发电技术在国内外得到了广泛应用和飞速发展。世界太阳能光伏产业以年平均超过33%的增长率发展, 2002年的增长率更是超过40%。目前,全世界的光伏系统装机容量己经超过2. 0GW 到2010年将超过15GW。未来,太阳能光伏建筑一体化、光伏并网系统是太阳能光伏应用的最终发展方向。然而,光伏并网电站系统的运行一般都是处于无人执守的情况下运行,太阳能光伏电站是由一个个分散的光伏发电子系统构成,要对地域上广泛、分散的光伏系统进行监测维护是十分困难、繁琐的,需要大量的人力、物力。采用本地、远程监控技术对光伏发电系统进行实时监控,达到将这些分散式的能源系统进行集中调度管理,实现大电网的调峰、分配、计量、
[单片机]
以ADSP2BF537为核心的<font color='red'>网络通信</font>模块的设计
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved