逆变电源的模糊自适应整定PID控制方案

发布者:脑电风暴最新更新时间:2011-10-11 关键字:逆变电源  PID 手机看文章 扫描二维码
随时随地手机看文章
  1 引 言

  随着人们对电质量要求的日益增高,电力电子交流波形精确控制技术成为电力电子技术的研究热点之一。他的主要研究目标是使被控量精确跟踪参考量,并减小电力电子系统交流侧的谐波畸变。

  为了获得高质量的正弦输出电压波形,人们将现代控制理论应用到逆变电源系统的控制中,提出了很多基于调制策略的控制方法。

  PID控制是一种建立在经典控制理论基础上的控制策略,由于其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一,长期以来广泛应用于工业过程控制的各个领域。然而,常规PID控制有许多不完善之处,如控制器的参数在整定好以后,一般不能随着控制系统的实时状况而改变,动态响应比较慢等。

  本文将模糊自适应整定PID控制策略引入逆变电源控制,通过对被控对象的参数检测,运用模糊推理,实现对PID参数的实时调整,以达到最佳控制效果。通过仿真实验证明,模糊自适应整定PID控制改善了逆变电源系统的稳定性能,提高了输出波形的质量,使系统兼具良好的动、静态性能。

  2 数学模型

  图1为一个带LC滤波器的单相全桥逆变器的主电路结构图。

 

  当逆变器空载时,iO=0:

 

  由于滤波电感等效内阻R很小,此时逆变器可近似认为是一无阻尼二阶振荡环节。

  3 模糊自适应整定PID控制

  3.1 模糊自适应整定PID控制器原理

  人们运用模糊数学的基本理论方法,把规则的条件、操作用模糊集表示,并把这些模糊控制规则以及有关信息(如评价指标、初始PID参数等)作为知识存入计算机知识库中,然后计算机根据控制系统的实际响应情况(即专家系统的输入条件),运用模糊推理,即可自动实现对PID参数的最佳调整,这就是模糊自适应PID控制。模糊自适应PID控制器目前有多种结构形式,但其工作原理基本一致。模糊自适应PID控制器的结构图如图2所示。

 

  由图2可见,模糊控制由常规PID控制部分和模糊推理两部分组成,模糊推理部分实质就是一个模糊控制器,只不过他的输入是偏差e和偏差变化率ec,输出是△KP,△KI,△KD。PID参数模糊自整定是找出PID三个参数与偏差e和偏差变化率e之间的模糊关系,在运行中通过不断检测e和ec,根据模糊控制原理来对3个参数进行在线修改,以满足不同e和ec时对控制参数的不同要求,从而使被控对象有良好的动、静性能。

  3.2 模糊自适应PID控制器的设计

  模糊控制器的输入为误差e和误差变化率ec,输出为△KP,△KD,△KD本文2个输入变量e和ec及3个输出变最△KP,△KI,△KD的论域均被划分为7个模糊子集:负大(NB)、负中(NM)、负小(NS)、零(Z)、正小(PS)、正中(PM)、正大(PB)。模糊子集的隶属函数均为等腰三角形。

  模糊控制设计的核心是总结工程设计人员的技术知识和实际操作经验,建立合适的模糊控制规则表,得到针对△KP,△KI,△KD三个参数分别整定的模糊控制表,如表1~表3所示。所以采用的控制规则为:

 

[page]

  3.3 PID参数在线自适应整定工作流程

  模糊自适应整定PID是在PID的算法的基础上,通过计算当前系统误差e和误差变化率ec,根据各模糊子集的隶属度赋值表和各参数模糊控制模型,应用模糊推理,实时修正PID参数。其工作流程如图3所示。

 

[page]

  4 系统仿真及结果分析

  基于以上分析,利用 Matlab/Simulink对本设计系统进行了仿真。控制器采用离散S函数与Simulink模块相结合的方式实现,控制器参数、控制上下限及采样时间采用封装的形式改定。仿真电路如图4所示。

  主要参数:开关频率3 kHz。采样频率10 kHz;输入电源为直流500 V;输出为正弦交流电压,电压值位220 V,频率50 Hz;输出滤波电感、滤波电容分别为40 mH,100μF。

  在电路仿真过程中,分别使用模糊自适应整定PID控制和普通PID控制对逆变电路实施控制,对两者的输出电压和误差信号的波形进行对比,仿真结果如图5所示。

 

  图5(a)和5(b)分别为普通PID控制和模糊自适应整定PID控制时输出电压波形;图5(c)和图5(d)分别为普通PID控制和模糊自适应整定PID控制时输出电压误差的波形。由图可见:在模糊自适应整定PID控制作用下逆变器的动态响应速度快、超调小,输出稳定后其幅值变化量很小,误差值在±1.5 V之内。

  图6为模糊自适应整定PID控制时输出电压的谐波分析。这里只分析到25次谐波,总谐波畸变率THD<3%。

 

  5 结 语

  本文提出了一种基于模糊自适应整定PID控制策略的逆变电源控制方案,并进行了理论分析和Matlab/Simulink仿真。从仿真结果可以看出,模糊控制器的引入可以实时修改系统的控制参数,他系统获得较常规PID控制更优良的动态性能。共快速的响应速度和强鲁棒性说明这种自适应模糊控制是一种具有实用价值的控制方案,满足了逆变电源的控制要求。同时办案控制器结构简单、编程方便、实时性好,易于在单片机和DSP上实现。

 

 

 

关键字:逆变电源  PID 引用地址:逆变电源的模糊自适应整定PID控制方案

上一篇:ARM LPC2101的无刷直流电机控制方案
下一篇:基于ARM和FPGA的嵌入式超声探伤系统

推荐阅读最新更新时间:2024-05-02 21:38

基于LM5025的大功率有源箝位逆变电源
1 引 言   正激变换器由于拓扑的简单性,被广泛的应用在电源行业,但是变压器开关关断时需要磁复位【1】。一般都是用第三复位绕组、RCD箝位电路以及LCD缓冲器等,但是由于这几种复位方式都有其自身的缺点导致正激变换器不适用于大功率和高频场合。   和这些传统的复位方式相比,有源箝位有许多优点:①变压器对称双向磁化,工作在B-H曲线的第一和第三象限,变压器得到充分利用;②箝位开关管是零电压开关,主开关管虽然不容易实现零电压开关,但是由于有箝位装置和缓冲电容使得其开通与关断时的电压应力大大减小;③励磁能量和漏感能量全部回馈电网,占空比可以大于0.5。   以前,由于有源箝位专用IC较少,实现起来比较困难,限制了有源箝位的广泛应用。近年
[电源管理]
基于LM5025的大功率有源箝位<font color='red'>逆变电源</font>
以16位单片机8XC196MC为内核的逆变电源设计
1、引言 近来,逆变电源在各行各业的应用日益广泛。本文介绍了一种以16位单片机8XC196MC为内核的逆变电源系统的设计。8XC196MC片内集成了一个3相波形发生器WFG,这一外设装置大大简化了产生同步脉宽调制波形的控制软件和外部硬件,可构成最小单片机系统同时协调完成SPWM波形生成和整个系统的检测、保护、智能控制、通讯等功能。 2、电源系统的基本原理 该电源由蓄电池输入24V直流电,然后通过桥式逆变电路逆变成SPWM波形,经低通滤波器得到正弦波输出。SPWM波形由8XC196MC的3相波形发生器WFG产生,可输出所需电压和频率的正弦波。 3、系统硬件设计 该逆变电源系统可实现调频、调压功能。通过A/D转换,自动反馈调
[电源管理]
以16位单片机8XC196MC为内核的<font color='red'>逆变电源</font>设计
简单实用的逆变电源制作,附电路图、计算方法
描述: 简单实用的 逆变电源 (包括 逆变器 的设计计算方法) 这是一种性能优良的家用逆变电源电路图,材料易取,输出功率150W。本电路设计频率为300Hz左右,目的是缩小逆变变压器的体积、重量。输出波形方波。这款逆变电源可以用在停电时家庭照明,电子镇流器的日光灯,开关电源的家用电器等其他方面。 电容器 C1、C2用 涤纶电容 ,三极管 BG1-BG5可以用9013:40V 0.1A 0.5W,BG6-BG7可以用场效应管IRF150:100V 40A 150W 0.055 欧姆。变压器B的绕制请参考  逆变器 的设计计算方法,业余条件下的调试;先不接功率管,测 A点、B点对地的电压,调整R1或R2使A、B两个点的电压要相同,
[电源管理]
简单实用的<font color='red'>逆变电源</font>制作,附电路图、计算方法
基于AT89S51单片机的PID温度控制系统设计
  温度控制技术不仅在工业生产有着非常重要的作用,而且在日常生活中也起着至关重要的作用。本文对系统进行硬件和软件的设计,在建立温度控制系统数学模型的基础之上,通过对PID控制的分析设计了系统控制器,完成了系统的软、硬件调试工作。算法简单、可靠性高、鲁棒性好,而且PID控制器参数直接影响控制效果。   1. 系统概述   1.1 系统总体结构   该系统利用AT89S51丰富的外设模块搭建硬件平台。系统的硬件电路包括:模拟部分和数字部分,基本电路由核心处理模块、温度采集模块、键盘显示模块及控制执行模块等组成。   1.2 系统工作流程   系统开始工作时,首先由单片机控制软件发出温度读取指令,通过数字温度传感器采集被控对象的当前温度
[电源管理]
基于AT89S51单片机的<font color='red'>PID</font>温度控制系统设计
PID调节器正/反作用的确定方法
一 调节器正/反作用的确定方法 调节系统投自动:往往在控制方案确定好且判断出调节器的正/反作用后,最关键的是P、I、D参数如何整定,根据多年的现场工作经验,谈谈如何整定调节系统的P、I、D参数,请大家在工程中参考。 在整定调节系统的P、I、D参数前,要保证一个闭环调节系统必须是负反馈,即Ko*Kv*Kc >0。 调节对象Ko: 阀门、执行器开大,测量PV增加,则Ko>0;反之,则Ko<0; 调节阀门Kv: 阀门正作用(气开、电开),则Kv>0;阀门反作用(气关、电关),则Kv<0; Ko、Kv的正负由工艺对象和生产安全决定,根据Ko、Kv的正负和Ko*Kv*Kc >0,我们可以确定Kc的正负; 调节器Kc: 若Kc>0,
[嵌入式]
<font color='red'>PID</font>调节器正/反作用的确定方法
复杂可编程逻辑器件(CPLD)在航空115V/400Hz高频链逆变电源中的应用
0    引言   航空配电系统所用115V/400Hz电源一般是由直流逆变所得,主要供军用飞机、雷达等设备使用。逆变电源中的能量转换过程是,直流电通过逆变电路变换成高频脉冲电压,经滤波电路形成正弦波。近来,高频链逆变技术引起了人们越来越浓的研究兴趣。高频链逆变技术用高频变压器来代替传统逆变器中笨重的工频变压器,大大减小了逆变器的体积和重量。高频链逆变技术是由Mr.Espelage于1977年提出的,它与常规的逆变技术最大的不同在于利用高频变压器实现了输入与输出的电气隔离,减小了变压器的体积和重量。   传统的高频链逆变器由常规数字电路构成,存在设计复杂、抗干扰能力差等缺点。为了解决该问题,本文采用复杂
[电源管理]
复杂可编程逻辑器件(CPLD)在航空115V/400Hz高频链<font color='red'>逆变电源</font>中的应用
基于MT888O—DTMF的逆变电源的设计与开发
双音多频(DTMF)编解码通信具有抗干扰强、低成本、远距离的特点。本文提出基于DTMF远程通信的逆变电源系统。介绍DTMF收发控制器MT8880和三相PWM发生器SA8282的结构特性,由MT8880与单片机80C51和SA8282及IPM组成的基于DTMF技术的逆变电源,具有低成本高可靠远程数据通信的功能,形成远程遥测遥控逆变电源,扩大了逆变电源的应用范围。 0 引言 在远程测控系统中(或远程多机控制系统中)可利用双音多频(dual tone multi frequency,DTMF)编码技术通过电话网进行低成本数据传输。DTMF是由一组低音频信号和一组高音频信号以一定方式组合构成,每组音频信号各有4个音频信号,而每种组合有一个
[电源管理]
基于MT888O—DTMF的<font color='red'>逆变电源</font>的设计与开发
多功能单相逆变电源
    摘要: 介绍一种输出为115V、400Hz电源的工作原理,给出了相应的电路原理图及参数。     关键词: PWM调制  逆变  谐波 1 引言     直流27V变为交流115V、400Hz的逆变电源在部队和船舶上应用广泛,有较大需求。针对这一情况,我们研制了800VA的单相静态逆变电源,该电源采用直流27V输入,可以输出115V、400Hz的正弦波电压。并且用3台同样的电源经适当联接,在外围电路控制下,可以作为一台三相逆变电源使用。     目前,新技术不断出现,构成DC/AC逆变的方法有很多。但考虑到具体的使用条件以及成本与可靠性,该电源采用了比较典型的两级变换的方式,即第一级运用DC/DC变
[应用]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved