传感器技术在SMT传输系统中的应用

发布者:EternalWhisper最新更新时间:2011-10-19 关键字:传感器技术  SMT传输系统 手机看文章 扫描二维码
随时随地手机看文章
    随着中国的改革开放的进一步发展,中国已经成为全球电子产品的加工生产基地,中国市场对SMT设备的需求越来越大。由于经济开发力度等因素限制,我国SMT产业分布不均匀,主要集中在珠三角和长三角地区,主要产品是生产转角机、传输机、入料机等辅助生产设备,竞争力非常大,据不完全统计,在中山三乡就有10多家这类产品生产企业。因此厂家需要不断更新技术,加大研发力度,让自己的产品功能更齐全、价格更便宜、加大产品亮点等来吸引客户,提高竞争力。而在SMT传输系统中加入一种新型ML100系列光电传感器对整个系统的运行提供了保障。
    ML100系列光电传感器是倍加福中国推出新一代紧凑型系列的传感器,具有高灵敏度、体积小、高亮度LED状态提示、可适用于干冷环境等特点,具体应用在包装设备、皮带传输设备、PCB处理设备等。

1 系统构成
    如传感器流程示意图1、图2所示,假设一块PCB的编号为01,首先从通过传输设备伸缩接驳机(编号为CS01)进入设备贴片机(编号为TP01)进行操作贴片流程,完毕之后再从贴片机(编号为TP01)进入传输设备接驳机(编号为CS02),再通过传输设备接驳机(编号为CS02)进入下一个SMT生产设备,如此反复。



2 工作原理
2.1 传输系统流程设计
    为了确定设备和传输系统的工作状态是否正常,本设计方案。在伸缩接驳机CS01与贴片机TP01的连接处A点安装一个传感器1(编号为CG01),在贴片机TP01和伸缩接驳机CS02的连接处安装传感器2(编号为CG02)以及在下道工序设备入口处安装传感器3(编号为CG03)。这3个传感器分别位于贴片机的入口处、出口处以及下道工序设备的入口处,分别扫描进入贴片机的PCB板的编号、进入贴片机(TP01)时间T1和出机时间T2以及进入下道工序设备时间T3,并将这些数据传送到主机的数据库中。在贴片机输送数据端口增设一个报警系统,在传输系统的输入端和输出端分别增设一个报警系统。因为SMT设备中大型设备的进出时间基本上已固定(比如说一种小型贴片机的贴装速度为3 s/块),每道工
序的操作时间基本上固定,现将设贴片机的参照理论操作时间设置为T4,在传输系统也就是传输纽带中的参照理论传输时间设置为T5(所有时间都精确到秒)。[page]


    当PCB板(编号为01)经过传输设备伸缩接驳机(编号为CS01)进入设备贴片机(编号为TP01)时,由在A点安装的传感器1(编号为CG01)扫描PCB板的编号并记录进入贴片机(TP01)时间T1,经过贴片机后从B点输出,并被B点的传感器扫描其编号并记录出贴片机的时间T2,经过传输设备接驳机(编号为CS02)进入下道工序的设备中,由C点的传感器3(编号为CG03)扫描其编号并记录其进入下道工序设备的时间T3。通过这些参数的匹配和对比,就可以很清楚的分析出哪个环节出现了故障,什么时间、什么设备都能很及时的反映出来。分析数据时,会出现以下2种情况:
    1)当出入贴片机的PCB的编号以及进入下道工序设备时扫描的PCB的编号匹配时,就可以进行比较,由此可以综合以下几个情况:
    ①当|T2-T1-T4|≥0.5时(0.5 s是系统设置的允许误差),也就是说出贴片机时间T2减去进入贴片机的时间T1,再与贴片机设备的参考时间T4比较,当这个比较值的绝对值大于或者等于系统允许的误差0.5 s时,说明设备贴片机(编号为TP01)工作不正常,装在贴片机输入数据端口的报警系统会进行报警,显示红灯;
    ②当|T2-T1-T4|<0.5时(0.5 s是系统设置的允许误差),也就是说出贴片机时间T2减去进入贴片机的时间T1,再与贴片机设备的参考时间T4比较。当这个比较值的绝对值小于系统允许的误差0.5 s时,说明设备贴片机(编号为TP01)工作正常,装在贴片机输入数据端口的报警系统显示绿灯;
    ③当|T3-T2-T5|≥0.5时(0.5 s是系统设置的允许误差),也就是说进入下道工序设备的时间死减去出贴片机的时间T2,再与传输系统的传送的参考时间T5比较,当这个比较值的绝对值大于或者等于系统允许的误差0.5 s时,说明传输设备接驳机(编号为CS02)工作不正常,装在接驳机(编号为CS02)的报警系统会进行报警,显示红灯;
    ④当|T3-T2-T5|<0.5时(0.5 s是系统设置的允许误差),也就是说进入下道工序设备的时间死减去出贴片机的时间T2,再与传输系统的传送的参考时间T5比较,当这个比较值的绝对值小于系统允许的误差0.5 s时,说明传输设备接驳机(编号为CS02)工作正常,装在接驳机(编号为CS02)的报警系统会显示绿灯。
    2)当出入贴片机的PCB的编号以及进入下道工序设备时扫描的PCB的编号不匹配时,就可以进行比较,由此可以综合以下几个情况:
    ①当传输设备伸缩接驳机(编号为CS01)进入设备贴片机(编号为TP01)时由在A点安装的传感器1(编号为CG01)扫描的PCB的编号与在出设备贴片机(编号为TP01)扫描的编号不符合时,系统不不进行对比,等待(T4+0.5)(0.5 s是系统设置的允许误差)在进行比较;
    ②当从传输设备伸缩接驳机(编号为CS01)进入设备贴片机(编号为TP01)时由在A点安装的传感器1(编号为CG01)扫描的PCB的时间为T1,当等待时间大于或者等于(T4+0.5)(0.5 s是系统设置的允许误差)时,在贴片机的出口处的传感器2(编号为CG02)还未扫描与该PCB板匹配的编号时,说明该PCB板被卡在贴片机上,贴片机自动进行报警显示红灯;
    ③当传输设备伸缩接驳机(编号为CS02)出设备贴片机(编号为TP01)时由在B点安装的传感器2(编号为CG02)扫描的PCB的编号与在进入下道工序设备的传感器3(编号为CG03)扫描的编号不符合时,系统不不进行对比,等待(T5+0.5)(0.5 s是系统设置的允许误差)时间后在进行比较;
    ④当传输设备伸缩接驳机(编号为CS02)出设备贴片机(编号为TP01)时由在B点安装的传感器2(编号为CG02)记录的PCB的时间T2开始,当等待时间大于或者等于(T4+0.5)(0.5 s是系统设置的允许误差)时间后,在进入下道工序设备的传感器3(编号为CG03)还未扫描到与该PCB板匹配的编号时,说明该PCB板被卡在传送设备伸缩接驳机(编号为CS02)上,在其上面的报警系统会进行报警并显示红灯。
2.2 滑动模块设计
    以前的传输系统经常出现错位现象,导致产品被卡位。这些现象发生主要原因是生产线在生产过程中,设备会产生振动,从而会产生一定的位置误差,这个误差会影响设备的运行状况,当误差过大时,会影响产品的质量和生产率。要想抵消这个误差,必须有补偿装置。本方案在传输系统的皮带上装上位置传感器和马达等装置构成一套滑动模块装置,由位置传感器将数据采集过来,经过比较后调整整个传输系统的位置。


    如图3滑动模块流程示意图所示,本系统方案设计在传输系统和SMT生产设备的连接处,增设一个滑动装置,主要由滑动板、滚珠和位置传感器组成,形成了一个闭环控制,起到平衡作用。在生产过程中,由模块装置上的位置传感器实时将实际位置信号反馈给系统,与给定输入位置信号相比较产生一个位置误差信号,然后由这个误差信号驱动电机运转进行位置调整。当设备平衡时,位置误差为零,不进行位置调
整;当传输机有偏斜时,位置误差不为零,由它驱动电机运转,使设备进行一定的位置调整。通过这套装置,消除由振动产生位置偏移、利于整个生产线的生产、增强各设备之间衔接。
2.3 数据通信模块设计
    本设计方案按照传统的方法采用了SMT生产线系统的通信协议,达到数据的互相通信,用上位机(PC)和下位机(MCU)进行连接通信。通信的接口方式为RS232串口通信,波特率为9 600 bp/s,数据位数为8位,停止位为1位。其中第二位的命令数据位和功能数据位为设备正常模式下的数据位,每个命令数据位的都有其功能表达方式,而功能的表达是由功能数据为来规定的。而数据的传送有二种方式,第一种是当设备正常工作时(即设备的正常工作模式下)的传送方式,第二种是当设备非正常工作时(即设备的故障模式下)的传送方式。

3 实验结果
    通过近半年的使用,通过一系列的数据表明,达到了预想效果,大大增强了系统的可操作性、稳定性和兼容性。

4 结论
    总之,将这套方案运用到SMT生产系统中,增添了设备的亮点,提高了企业的竞争能力,势必给企业带来更多的机会,从而带动了企业的更大发展。据企业反馈过来的数据表明,企业的订单比原先的翻了一倍,现正在扩大生产规模,促进了企业的发展,提高了企业的竞争力。

 

 

关键字:传感器技术  SMT传输系统 引用地址:传感器技术在SMT传输系统中的应用

上一篇:基于AMR磁阻传感器和加速度传感器的电子罗盘
下一篇:基于PLC控制器的矿井副井提升信号系统的设计

推荐阅读最新更新时间:2024-05-02 21:39

NASA参与研发自动驾驶汽车 主攻传感器技术
据报道,美国国家航空航天局(NASA)的工程师已经加入自动驾驶汽车的研发队伍。肯尼迪航天中心将提供4600米长、100米宽的航天飞机着陆设备跑道,用于自动驾驶汽车的控制测试。   NASA的工作源于美国交通部发起的一项试点计划。该计划拟对自动驾驶技术加以完善,并组建了中佛罗里达自动化车辆合作伙伴关系组织。该组织在一份声明中表示,合作研发成果不仅有利于保障司机的生命安全,也将为执行太空任务提供有用的技术。   声明指出,肯尼迪航天中心沼泽工程实验室的工程师团队,最近测试了自动驾驶 汽车传感器 功能及相关仪器在极端环境条件下的受损情况。NASA合作开发中心规划与发展部经理艾米·豪斯·基尔福里奇表示,“我们希望为发展未来最新的尖端技术提
[汽车电子]
物联网核心传感器技术 韩国忧心落后于大陆
物联网(IoT)2015年可望步上成长轨道,但韩国在核心技术感测器领域的竞争力却比大陆还低。目前韩国物联网平台竞争力的评价不如美国、硬体生态系的评价不如大陆,也让一向自诩科技强国的韩国,忧心将在物联网领域沦为落后国家。 据韩国经济报导,日前韩国产业通商资源部(产资部)与电子零组件研究院发布的资料显示,韩国2013年全球感测器市占率1.7%,低于大陆的2.9%。而美国(31.8%)、日本(18.6%)、德国(12.2%)等则正以合计60%以上市占率主导市场。 感测器与有线及无线通讯网路、人工智能等介面技术,同属物联网三大核心技术。在事物与事物之间自由接收与发送资讯的物联网世界里,扮演生成与取得资讯的重要角色。若以人体比
[物联网]
三星开发“RWB”超薄传感器技术
  图片来源:驱动之家   为解决传统RGB拜耳滤镜传感器光电转换效率不足的问题,索尼发明了RGBW(红绿蓝白)传感器,其原理是用一个白色滤镜取代绿色滤镜,这样就可以提升传感器接收光线的能力,但相应地也损失了一部分色彩信息。   而三星最近也研发出自己的一套非拜耳滤镜传感器,取名为RWB(红白蓝),其原理与索尼RGBW颇为近似,并进一步将所有绿色滤镜都换成了白色。这样做的目的是为了能在1.0微米像素尺寸下,实现与大像素尺寸同样的透光量和拍照效果,同时换来更薄的尺寸。   三星表示,普通1600万像素摄像头运用该技术,模组尺寸将可以缩小23%,厚度仅5mm,如果是主流1300万像素,厚度则可进一步缩减至4.5mm。
[家用电子]
传感器技术中的阻抗测量方法
实际应用中的电路元件要比理想电阻复杂得多,并且呈现出阻性、容性和感性特性,它们共同决定了阻抗特性。阻抗与电阻的不同主要在于两个方面。首先,阻抗是一种交流(AC)特性;其次,通常在某个特定频率下定义阻抗。如果在不同的频率条件下测量阻抗,会得到不同的阻抗值。通过测量多个频率下的阻抗,才能获取有价值的元件数据。这就是阻抗频谱法(IS)的基础,也是为许多工业、仪器仪表和汽车传感器应用打下基础的基本概念。 电子元件的阻抗可由电阻、电容或电感组成,更一般的情况是三者的组合。可以采用虚阻抗来建立这种模型。电感器具有的阻抗为jωL,电容器具有的阻抗为1/jωC,其中j是虚数单位,ω是信号的角频率。采用复数运算将这些阻抗分量组合起来。阻抗的虚数
[嵌入式]
对焦更清晰 尼康公布混合传感器技术专利
据New Camera报道,尼康最新研发出混合传感器专利,在专利信息中看到,尼康的混合对焦传感器是基于相差和反差对焦技术来实现。而在专利图像中,尼康的AF像素是用感光像素在传感器内部制作得到,并将单个像素一分为二,这有点类似于佳能的全像素双核AF技术。该专利的成功研发,或许将意味着接下来尼康D6、尼康D7600和尼康D760应该会搭载上混合AF系统。
[家用电子]
汽车传感器技术与应用趋势 国内技术堪忧
   全球传感器市场正呈现出快速增长态势,就世界范围而言,传感器市场上增长最快的依旧是汽车市场。然而,和国外传感器产业相比,中国汽车传感器尚未形成独立的产业,中国的汽车传感器产品与国外同类产品相比,水平相差10多年,因此多种传感器尤其是高水平汽车传感器仍旧依赖进口。   全球传感器市场正呈现出快速增长态势。资讯公司INTECHNOCONSULTING的市场报告显示,2008年全球传感器市场容量为506亿美元,预计2010年全球传感器市场可达600亿美元以上。东欧、亚太区和加拿大成为传感器市场增长最快的地区,而美国、德国、日本依然是传感器市场分布最大的国家。就世界范围而言,传感器市场上增长最快的依旧是汽车市场。   “没有传
[汽车电子]
监控用CMOS与CCD图像传感器技术对比
CCD(Charge Coupled Device)图像 传感器 (以下简称CCD)和 CMOS 图像传感器(CMOS Image Sensor以下简称CIS)的主要区别是由感光单元及读出 电路 结构不同而导致制造工艺的不同。CCD感光单元实现光电转换后,以电荷的方式存贮并以电荷转移的方式顺序输出,需要专用的工艺制程实现;CIS图像感光单元为光电 二极管 ,可在通用CMOS 集成电路 工艺制程中实现,除此之外还可将图像处理电路集成,实现更高的集成度和更低的功耗。 目前CCD几乎被日系厂商垄断,只有少数几个厂商例如索尼、夏普、松下、富士、东芝等掌握这种技术。CIS是90年代兴起的新技术,掌握该技术的公司较多,美国有OmniVisi
[嵌入式]
英飞凌将于7月20日至22日举办数字化展会,集中展示前沿传感器技术
【2020年7月16日,德国慕尼黑讯】英飞凌科技股份公司 (FSE: IFX / OTCQX: IFNNY) 持续其虚拟展会策略,将于 2020 年 7 月 20 日至 22 日在线展示公司的传感器解决方案。这场由英飞凌主办的数字展会,以“虚拟传感器体验”(Virtual Sensor Experience,简称VSE)为主题,聚焦汽车、消费电子及工业等多个领域,将展出 22 款相关产品,并举办15 场在线演讲以及1场数字化「Makers' Corner」活动,让客户、合作伙伴及媒体深入了解其产品组合。所有线上活动将持续至 7 月 22 日结束,之后所有信息在八月底前仍可在线获取。 活动的参与方式非常简单:在 http
[汽车电子]
小广播
热门活动
换一批
更多
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

更多每日新闻
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved