基于BP神经网络的一种传感器温度补偿方法

发布者:BlissfulHeart最新更新时间:2011-10-24 关键字:温度补偿  硅压阻式  传感器  BP神经网络  电桥 手机看文章 扫描二维码
随时随地手机看文章
    传感器特别是硅压阻式传感器的温度误差在其总误差中占有很大的比重,温度补偿的好坏直接影响着传感器的总精度。温度误差的补偿方法有很多种,其中软件补偿是一种较常见的方法。由于传感器的温度误差是一种非线性误差,即各个温度点的补偿系数也应该呈非线性,这给补偿带来了一定的困难。常常采用的方法是选取几个温度点,求得补偿系数,其它温度点的补偿系数通过线性插值得到,这种方法实质上是一种将补偿系数分段线性化来拟合补偿系数的非线性曲线的方法。因此,要做到较高的补偿精度比较困难。而BP神经网络具有很强的曲线拟合能力,可以利用BP网络对传感器输出值进行处理,得到去除了温度误差的理想输出值。但是,单单从传感器的输出很难判断哪些是由输入压力所引起的输出,哪些是由于温度误差所带来的输出。所以,向BP网络引入一个反映温度变化的参数至关重要。而传感器桥路电压可以满足条件。因此,利用传感器的桥路电压和未经温度补偿的传感器输出一起作为神经网络的输入。试验证明,构建的BP神经网络能够使传感器的温度误差得到大大降低,使得传感器在-40~60℃温度范围内,非线性温度误差降低到0.2%。

1 BP神经网络硅压阻式传感器温度补偿
1.1 硅压阻式传感器的温度误差
    硅压阻式传感器是用半导体材料制成的,而半导体材料对温度很敏感。因此,硅压阻式传感器的温度误差较大,并且其温度误差具有以下特点:首先,在相同压力下硅压阻式传感器的温度误差比其他材料传感器的要大;其次,它的温度误差是非线性的;再次,在进行温度补偿的过程中,很难区分温度误差引起的输出量的变化和压力变化引起的输出量的变化;此外,硅压阻传感器的温度误差有很大的分散性,甚至由同一制造商提供的同一型号传感器的误差幅度彼此之间也会有轻微的差异。这些特点给硅压阻式传感器的温度误差补偿带来了一定的困难。鉴于硅压阻传感器温度误差的特点,要对它进行补偿,首先必须找到一个能够反映温度变化的参量,这可以从传感器的测量电路中获得。
    硅压阻式传感器的测量电路,由应变计组成的四臂电桥组成,如图1所示,四臂电桥中的4个电阻的阻值不仅会随压力的变化而变化,还会随温度的升高而增大。


    假设温度为t0时,Rt=R2=R3=R4=R0,当温度、压力发生变化时,各电阻阻值可以用式(1)、(2)表示:

    从式(4)可得,桥路电压Vb与压力产生的应变没有关系,仅与温度引起的附加应变有关。因此,可以利用它作为反映温度变化的参数,而不需另外增加一个温度传感器,这样做的好处是,直接利用压力传感器本身元件敏感温度的变化,从而避免由于外加温度传感器而导致测量温度和压阻传感器应变片实际温度存在差异给补偿带来误差,提高了补偿的精度,同时也节约了成本,简化了电路。
    硅压阻式传感器虽然存在着很大的温度误差,但是在温度不变的情况下,传感器的输出呈现出很好的线性度和重复性,这就为用BP神经网络对它进行温度补偿提供了必要的条件。[page]

1.2 BP神经网络算法
    1986年Rumelhart,Hinton和Willians完整而简明地提出一种ANN的误差反相传播训练算法(简称BP算法)。目前,在人工神经网络的实际应用中,绝大部分的神经网络模型是采用BP网络和它的变形形式,它也是前向网络的核心部分,并体现了人工神经网络最精华的部分。
    BP神经网络由输入层、输出层和多层隐含层组成,只要隐含层中有足够数量的神经元,它就可以用来逼近几乎任何一个函数。事实上,研究已表明,两层网络在其隐含层中使用S形传输函数,在输出层中使用线性传输函数,就几乎可以以任意精度逼近任何函数。三层BP神经网络的结构图如图2所示,任意层的BP神经网络具有类似的结构。


    在多层网络中,某一层的输出成为下一层的输入。描述此操作的等式为:
   
    这里,M是网络的层数。多层网络的BP算法是LMS(Least Mean Square,最小均方)算法的推广。算法的输入是一个网络正确行为的样本集合:
   
    这里pQ是网络的输入,tQ是对应的目标输出。每输入一个样本,便将网络输出与目标输出相比较。算法将调整网络参数以使均方误差最小化。每一步对参数的调节见式(7)(8)。
    式(6)为均方误差的期望。这里,均方误差的期望值被第k次迭代的均方误差所代替。
 
    这里α是学习速度。
1. 3 BP神经网络的构建和训练
    用BP神经网络对硅压阻式传感器进行温度补偿的原理图如图3所示,在MatLab中创建的是一个1-10-2-1的BP网络。


    用BP神经网络对硅压阻式传感器实现温度补偿分成两部分,如图3所示。其中,P表示输入的压力;y表示未经温度补偿的传感器输出;Vb表示传感器测量电路的桥路电压;y'表示经过温度补偿的传感器输出。
    BP神经网络隐层由Log-Simoid层和线性层两层组成。也就是说隐层的函数分别为:
   

[page]

    传感器未经温度补偿的输出电压y和测量电路中的桥路电压Vb作为神经网络的两个输入参数,经过该网络后将得到除去了温度误差的输出结果。


    表1所示分别为-40、-20、0、20、40℃下测定的传感器桥路电压、2 MPa时传感器输出,100 MPa满量程输出。鉴于0 MPa较难获得,则可以将2 MPa作为最小压力。硅压阻式传感器在一定温度下具有很好的线性度,因此各温度下根据两个压力点的输出很容易推算出20、40、60、80 MPa输入压力时的电压输出值。
    选取常温20℃时的传感器输出作为目标值。这样就可以形成30个样本点,可以用式(10)表示。
   
    其中Xi为输入样本,可以表示为(yi,Vbi),yi为-40、-20、0、20、40℃温度下测得的未进行温度补偿的传感器输出;Vbi为yi相应的电桥桥路电压值;yi’为目标值,即与yi相同压力下在20℃所测得的传感器输出,该压力下的补偿后的目标输出值。
    采用L—M算法用MatLab对样本进行训练。得到值、阈值,训练过程如图4所示。


    分别测量-40~60℃,2~100 MPa传感器输出和相应温度下的最小压力下的Vb值,将传感器输出经过BP神经网络进行温度补偿后得到的结果如表2所示。



2 结论
    硅压阻式传感器经过BP神经网络补偿后,温度误差得到了大大的降低,在-40~60℃范围内,温度误差由原来的5.4%降到了0.2%,并且这个方法对其他类型的传感器的温度补偿同样适用,也可以应用于一些传感器输出的非线性校正。

 

 

 

关键字:温度补偿  硅压阻式  传感器  BP神经网络  电桥 引用地址:基于BP神经网络的一种传感器温度补偿方法

上一篇:集成MOSFET驱动器的全桥移相控制器-LM5046
下一篇:基于CMOS图像传感器的视频采集系统设计

推荐阅读最新更新时间:2024-05-02 21:39

半导体传感器和MEMS国际标准化进展
  去年,IEC TC47/SC47E (半导体分立器件标准化分技术委员会) 和IEC TC47/SC47F ( MEMS 标准化分技术委员会) 工作组会议及 MEMS 标准研讨会在日本东京召开。共有来自中国、日本、韩国的37位专家参加。中国代表团由中国电子技术标准化研究院、中电13所、航天704所、中机生产力促进中心、北京大学、西安电子科技大学等单位的12名代表组成,参加了此次全部会议。下面就随网络通信小编一起来了解一下相关内容吧。   IEC TC47/SC47E下设两个工作组:WG1 (半导体 传感器 工作组)、WG2 (微波器件工作组)。IEC TC47/SC47F下设三个工作组及一个标准维护组:WG1 (术语和定义工
[网络通信]
基于16位单片机的智能车控制系统设计
1引言 我国自2006年起举办的全国大学生“飞思卡尔杯”智能汽车竞赛融科学性、趣味性和观赏性为一体,是一项以迅猛发展、前 景广阔的汽车电子为背景,涵盖了自动控制、模式识别、传感技术、电子、电气、计算机、机械与汽车等多个学科专业的科技创新比赛。参赛队伍在车模平台基础 上,制作一个能够自主识别路线的智能车,在专门设计的赛道上自动识别道路行驶 。 本文所述的智能车就是根据比赛规则要求设计并 制作而成的,该智能车控制系统采用飞思卡尔半导体公司生产的16位MC9S12DG128单片机作为数字控制器,由安装在车前部的黑白CMOS摄像头负责 采集赛道信息,并将采集到的信号经二值化处理后传入单片机,单片机对信号进行判断处理后,由PWM
[单片机]
诺贝尔奖当之无愧,CCD传感器已无处不在
  瑞典皇家科学院6日宣布,将2009年诺贝尔物理学奖授予英国华裔科学家高锟以及美国科学家威拉德·博伊尔和乔治·史密斯。    伴随着数码相机、带有摄像头的手机等电子设备风靡全球,人类已经进入了全民数码影像的时代,每一个人都可以随时、随地、随意地用影像记录每一瞬间。带领我们进入如此五彩斑斓世界的,就是美国科学家威拉德·博伊尔和乔治·史密斯发明的CCD(电荷耦合器件)图像传感器。            百多年来,伴随着暗箱、镜头和感光材料制作不断取得突破,以及精密机械、化学技术的发展,照相机的功能越来越强大,使用越来越方便。     但是,直到几十年前,人们依然只能将影像记录在胶片上。拍摄影像慢慢普及,但即时欣赏、分享
[家用电子]
浅析交通抓拍和视频监控前端传感器技术
  CCD和CMOS是当前主要的两项成像技术,它们产生于不同的制造工艺背景,就当前技术言仍各具优劣。选择CCD或CMOS摄像机应依据适用环境和要求,合适选用CCD或CMOS技术,便能使图像监控达到预期的效果。另外,还可看到,COMS作为极具发展潜力的成像技术,较CCD有着更强劲的优势。本文将对CCD和CMOS主要技术作简要分析,并作出选择判断。文最后对CMOS技术做前景介绍。   无论是交通抓拍,还是高清视频监控,只要应用到视觉成像技术,就会涉及到感光传感器——即CCD或CMOS成像技术。业内对CCD和CMOS的优劣势讨论已经太多了,学术上争论本身是很有意义的,利于技术的进步,然而这种“泾渭分明”的争论或许更迎合各个厂家作为竞争
[安防电子]
浅析交通抓拍和视频监控前端<font color='red'>传感器</font>技术
Xilinx为嵌入视觉和工业物联网等广泛应用扩充成本
2016年9月28日,北京 All Programmable 技术和器件的全球领先企业赛灵思公司(Xilinx, Inc. (NASDAQ:XLNX))宣布,为包括嵌入式视觉和工业物联网等在内的广泛应用扩展其成本优化型芯片产品系列,包括其 Spartan ,Artix 和Zynq 系列,旨在满足下一代应用对于任意互联、传感器融合、精确控制、图像处理、分析、安全性与保密性的需求。 当今的嵌入式视觉和工业物联网应用需要收集、整理并分析来自众多不同传感器的数据,从而提供切实可行的信息把握。不管是调整厂房多传感器摄像头的功能,还是开发一个基于传感器融合的具有创新制导系统的智能无人机,设计者都能利用赛灵思FPGA和SoC产品来构建
[嵌入式]
Xilinx为嵌入<font color='red'>式</font>视觉和工业物联网等广泛应用扩充成本
苹果首款带有3D传感器的设备用在了 iPad 上?
据韩国网站报道,苹果公司计划在2020年3月发布一款带有3D传感后置摄像头的iPad Pro。    该报道援引未具名业内人士的话称,韩国合同制造商Derkwoo Electronics将为3D传感相机模块提供部分组件,这些部件的大规模生产预计将于2019年底开始。    后部的3D传感器据说支持ToF( Time of flight的简写,中文直译是飞行时间),这种技术可以测量激光或LED从房间内物体反弹的时间,从而提供精确的周围环境3D建模。iPad收集这些数据,用于构建更完美的AR图像。    此前就有消息说,预计明年iPhone将加入ToF摄像头,但今天这份报告显示,iPad Pro将比iPhone早6个月采用这项技术。具
[嵌入式]
位置传感器助推电机市场重拾增势
电机行业是一个传统的行业。经过200多年的发展,它已经成为现代生产、生活中不可或缺的核心、基础,是国民经济中重要的一环。作为劳动密集型产业,我国发展电机制造业有着得天独厚的优势。在近几年,国内电机市场得到了很好地发展。   但是,受整体经济低迷的影响,去年自动化市场遭遇低谷时期。在工业经济低迷的形式下,电机市场在2012年也持续走低。虽然农业与其它领域的应用有小幅的增长,但也不足以拉动市场重回增长态势。   无论是工业、家庭还是商业用电,电机都是耗能的主要“贡献者”。2012年中国政府出台的电机能效强制性国家标准GB18613-2012《中小型三相异步电动机能效限定值及能效等级》导致部分低效率、高耗能的产品停止生产。这一政策的
[模拟电子]
位置<font color='red'>传感器</font>助推电机市场重拾增势
外夹超声波流量计的优点及安装说明
固定外夹式超声波流量计具有准确、稳定、操作简便等特点在市场上广受好评。多用于大管道流量的测量,使用方便,只需将传感器按规定方式夹在管道上就可以测量,无需破管道,而且测量精度比较准确。采用IP68防护的传感器探头使用寿命更长,5-6年内不用更换可稳定工作。外夹式超声流量计,对安装人员要求高,安装的水平直接影响测量精度,日后维护工作多,长时间运行后,耦合剂失效,或传感器位置改变都会影响测量,需定期维护。 (一)超声波流量计在安装之前应了解现场情况,包括: 1. 安装传感器处距主机距离为多少; 2. 管道材质、管壁厚度及管径; 3. 管道年限; 4. 流体类型、是否含有杂质、气泡以及是否满管; 5. 流体温度;(插入式传感器管道压力) 6
[测试测量]
外夹<font color='red'>式</font>超声波流量计的优点及安装说明
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

更多精选电路图
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved