1 逻辑分析仪总体方案
逻辑分析仪包括:数据采样、数据存储、显示控制3大部分。由于Cyclone芯片EP1C3T144C8理想情况下最大频率可达到275 MHz,在实际设计中考虑到其误差,该设计的信号捕获精度定位在100 MHz。最多16路信号捕获输入通道,1路信号触发通道,可调的采样时钟/周期,3种信号采样模式,使用计算机的的显示器作为波形显示屏幕。
模块整体上是根据数据流的方向划分的,如图1所示。sys_ctrl模块对系统复位信号进行异步复位、同步释放,并且通过Cyclone芯片EP1C3T 144C8内部的PLL例化得到多个稳定可靠的时钟信号。Sampling_ctrl模块包含按键检测、触发控制、数据采样、数据存储等多个功能是采集控制的核心模块。VGA显示模块包含界面设计、字模数据寻址送显方式和显示驱动的时序控制。
2 复位信号产生PPL例化
逻辑分析仪的复位设计如图2所示,这个模块设计里,先用FPGA的外部输入时钟clk将FPGA的输入复位信号rat_n异步复位、同步释放处理,然后将复位信号输入PLL,同时clk也输入PLL。在PLL输出时钟有效前,系统的其他部分都保持复位状态。PLL的输出locked信号在PLL有效输出之前一直是低电平,等PLL输出稳定有效之后拉高该信号。FPGA外部输入复位信号rst_n和locked信号相与作为整个系统的复位信号。从PPL输出端得到时钟不仅频率和相位上比较稳定,而且网络延时也相比内部的逻辑产生的分配时钟要小得多。
[page]
通过FPGA内部的M4K块配置移位寄存器不断地读进新的采样值,数据采样回来后先经过SDRAM放入缓存FIFO中,然后把该FIFO中的数据上传到显示器。该模块的时钟是由PLL电路对FPGA输入的25 MHz晶振时钟倍频得到的。通过FPGA外部一组拨码开关控制输入电平为高或者低,从而设置不同的触发和采样模式。
3.1 SDRAM数据存储模块
将这个存储模块划分为多个子模块来实现。如图3所示。sdram_ctrl是SDRAM状态控制模块,该模块主要完成SDRAM的上电初始化以及定时刷新、读/写控制等状态的变迁。内部设计了两个状态机,一个用于上电初始化的状态控制,另一个月用于正常工作时的状态控制;sdram _cmd是SDRAM命令模块,该模块根据sdram_ctrl模块的不同状态指示输出相应的SDRAM控制命令和地址,sdram_wr_data是SDRAM数据读/写模块,该模块同样是根据sdram_ctrl模块的状态指示完成SDRAM数据总线的控制,SDRAM的数据读/写都在该模块完成。数据读/写借助了两个存储器(异步FIFO)如图4所示。其中wrfifo用于写SDRAM数据,rdfifo用于读SDRAM数据。在设计中SDRAM读/写都是以8个字(16 b)为单位,使用FIFO中的当前数据量作为操作SDRAM的状态指示。当wrfifo数量超过8个则发出写SD]RAM请求,读出wrfifo中的数据。同样,在rdfifo数据少于256 B(rd-fifo半空)时发出读SDRAM请求,读出8个新的数据写入rdfifo中,以保证后续电路总是持续的传输。SDRAM信号采集模块在上电延时后从SDRAM的0地址开始写入递增数据,随后通过内部FIFO依次送入SDRAM。SDRAM的所有地址写完数据后,启动SDRAM读逻辑,从0地址开始读出SDRAM内的数据放入缓存FIFO中,然后把该FIFO中的数据上传到显示器。
3.2 基于M4K的移位寄存器连续且可变频的采样模块
为了实现有效效据的精确捕获在不中断程序运行的情况下,有效数据长时间实时读进,提高嵌入式软件性能分析的范围和质量。利用Cyclone芯片内部M4K结构配置移位寄存器对数据实时采样,并且设置2个按键调节控制采样频率。
图5为M4K移位寄存器原理图。配置输入/输出的数据位宽w,移位寄存器的一个taps位宽m,总的taps数量n。这三个参数乘积就是占用的M4K存储大小。从图5中可看出,每个clk输入一个移位数据,同时输出一个数据,而M4K内部则是每个clk周期移位一次,每个tap的输出直接移位到下一个tap的输入,配置后的输出中可看到每个tap的最后一个w位宽的数据。
[page]
4 VGA显示界面的设计VGA界面设计主要完成对结果的显示。可以对测试对象的数目、采样模式、触发信号的模式、采样频率进行控制,并且将结果显示成为波形图以便使用者进行观察。在设计中需要的字符是通过取模软件PCtoLCD2002,把定义的字模数据存储在FPGA的M4K块生成的ROM里,显示的时候从ROM读数据进行显示。
5 FPGA仿真及调试
实时数据采集分析数据量大,时序复杂,以10 kHz~100 MHz的采样频率进行数据传输时,使用QuartusⅡ自带的仿真工具生成的激励,花费的时间长,而且与实际处理结果有一定的偏差,无法有效的验证整体模块的功能,同时也赡以对其进行实时模拟。本文在使用QuartusⅡ自带仿真工具的基础上,将综合后得到的结果导入Modesim 6.0中,编写Testbench提供仿真激励对逻辑分析仪的顶层模块进行仿真。通过比较整体功能进行验证。图6为逻辑分析仪顶层模块仿真波形。
由图6看出,3种采样模式分别为001,010,100。001采样模式被触发后显示后64个采样数据;010采样模式触发后显示前32个采样数据和后32个采样数据;100采样模式触发后显示前64个采样数据。清除采样信号低有效,开始一个新的采样触发。经过调试,该逻辑分析仪采样频率为100 MHz。在输入采样信号的情况下,能够得到比较不错的波形。图7是在该采样频率下观察到的波形。
6 结语
结果表明,该逻辑分析仪以每8个像素为单元作为一个采样数据的显示长度,最多16路信号捕获输入通道,1路信号触发通道,3种信号采样模式,数据的分析范围和质量得到提高,可方便科研、教学使用。
上一篇:气敏传感器QM-N5在矿井中的应用
下一篇:UWB技术应用介绍
推荐阅读最新更新时间:2024-05-02 21:47
- 宁德时代巧克力换电生态大会将举行,什么是“巧克力换电”?1.5分钟换电能实现吗?
- 新型生物材料与高端医疗器械广东研究院、远诺技术转移中心加入面向初创企业的 MathWorks
- S5PV210 Linux字符驱动之PWM蜂鸣器驱动
- 尼得科机床新增可实现高效加工的高速主轴产品线
- Gartner发布2025年影响基础设施和运营的重要趋势
- 智谱清言英特尔酷睿Ultra专享版发布,离线模型玩转AIPC
- Bourns推出全新高效能、超紧凑型气体放电管 (GDT) 浪涌保护解决方案
- S5PV210之UBOOT-2011.06启动过程解析
- 六个理由告诉您为什么应该将模拟无线麦克风更换为数字无线麦克风
- S5PV210启动过程分析