M4K块移位寄存器数据读进方式的逻辑分析仪设计

发布者:柔情细语最新更新时间:2011-12-21 关键字:逻辑分析仅  FPGA  采样  移位寄存器 手机看文章 扫描二维码
随时随地手机看文章
    逻辑分析仪主要采用高速采样、灵活触发和大容量存储等技术来实现对被测数据的捕获、存储和定位分析。传统数据存储电路将采样回来的数据先经过锁存器锁存,一旦触发标志有效,再根据采样时钟的频率把锁存器数据输出到外接的SRAM。其缺点是速度慢、存储占用空间大,不适用于大量数据缓存的需求。本文以三星的SDR SDRAM(K4S64632)作为存储器,通过FPGA内部的M4K块作为移位寄存器不断的进行读进数据的方式,在不中断程序运行的情况下实现有效数据不间断的读进,设置3种采样模式,结果表明该设计提高了数据的分析范围和质量。

1 逻辑分析仪总体方案
    逻辑分析仪包括:数据采样、数据存储、显示控制3大部分。由于Cyclone芯片EP1C3T144C8理想情况下最大频率可达到275 MHz,在实际设计中考虑到其误差,该设计的信号捕获精度定位在100 MHz。最多16路信号捕获输入通道,1路信号触发通道,可调的采样时钟/周期,3种信号采样模式,使用计算机的的显示器作为波形显示屏幕。


    模块整体上是根据数据流的方向划分的,如图1所示。sys_ctrl模块对系统复位信号进行异步复位、同步释放,并且通过Cyclone芯片EP1C3T 144C8内部的PLL例化得到多个稳定可靠的时钟信号。Sampling_ctrl模块包含按键检测、触发控制、数据采样、数据存储等多个功能是采集控制的核心模块。VGA显示模块包含界面设计、字模数据寻址送显方式和显示驱动的时序控制。

2 复位信号产生PPL例化
    逻辑分析仪的复位设计如图2所示,这个模块设计里,先用FPGA的外部输入时钟clk将FPGA的输入复位信号rat_n异步复位、同步释放处理,然后将复位信号输入PLL,同时clk也输入PLL。在PLL输出时钟有效前,系统的其他部分都保持复位状态。PLL的输出locked信号在PLL有效输出之前一直是低电平,等PLL输出稳定有效之后拉高该信号。FPGA外部输入复位信号rst_n和locked信号相与作为整个系统的复位信号。从PPL输出端得到时钟不仅频率和相位上比较稳定,而且网络延时也相比内部的逻辑产生的分配时钟要小得多。


[page]

3 控制模块
    通过FPGA内部的M4K块配置移位寄存器不断地读进新的采样值,数据采样回来后先经过SDRAM放入缓存FIFO中,然后把该FIFO中的数据上传到显示器。该模块的时钟是由PLL电路对FPGA输入的25 MHz晶振时钟倍频得到的。通过FPGA外部一组拨码开关控制输入电平为高或者低,从而设置不同的触发和采样模式。
3.1 SDRAM数据存储模块
    将这个存储模块划分为多个子模块来实现。如图3所示。sdram_ctrl是SDRAM状态控制模块,该模块主要完成SDRAM的上电初始化以及定时刷新、读/写控制等状态的变迁。内部设计了两个状态机,一个用于上电初始化的状态控制,另一个月用于正常工作时的状态控制;sdram _cmd是SDRAM命令模块,该模块根据sdram_ctrl模块的不同状态指示输出相应的SDRAM控制命令和地址,sdram_wr_data是SDRAM数据读/写模块,该模块同样是根据sdram_ctrl模块的状态指示完成SDRAM数据总线的控制,SDRAM的数据读/写都在该模块完成。数据读/写借助了两个存储器(异步FIFO)如图4所示。其中wrfifo用于写SDRAM数据,rdfifo用于读SDRAM数据。在设计中SDRAM读/写都是以8个字(16 b)为单位,使用FIFO中的当前数据量作为操作SDRAM的状态指示。当wrfifo数量超过8个则发出写SD]RAM请求,读出wrfifo中的数据。同样,在rdfifo数据少于256 B(rd-fifo半空)时发出读SDRAM请求,读出8个新的数据写入rdfifo中,以保证后续电路总是持续的传输。SDRAM信号采集模块在上电延时后从SDRAM的0地址开始写入递增数据,随后通过内部FIFO依次送入SDRAM。SDRAM的所有地址写完数据后,启动SDRAM读逻辑,从0地址开始读出SDRAM内的数据放入缓存FIFO中,然后把该FIFO中的数据上传到显示器。


3.2 基于M4K的移位寄存器连续且可变频的采样模块
    为了实现有效效据的精确捕获在不中断程序运行的情况下,有效数据长时间实时读进,提高嵌入式软件性能分析的范围和质量。利用Cyclone芯片内部M4K结构配置移位寄存器对数据实时采样,并且设置2个按键调节控制采样频率。


    图5为M4K移位寄存器原理图。配置输入/输出的数据位宽w,移位寄存器的一个taps位宽m,总的taps数量n。这三个参数乘积就是占用的M4K存储大小。从图5中可看出,每个clk输入一个移位数据,同时输出一个数据,而M4K内部则是每个clk周期移位一次,每个tap的输出直接移位到下一个tap的输入,配置后的输出中可看到每个tap的最后一个w位宽的数据。

[page]

4 VGA显示界面的设计
    VGA界面设计主要完成对结果的显示。可以对测试对象的数目、采样模式、触发信号的模式、采样频率进行控制,并且将结果显示成为波形图以便使用者进行观察。在设计中需要的字符是通过取模软件PCtoLCD2002,把定义的字模数据存储在FPGA的M4K块生成的ROM里,显示的时候从ROM读数据进行显示。

5 FPGA仿真及调试
    实时数据采集分析数据量大,时序复杂,以10 kHz~100 MHz的采样频率进行数据传输时,使用QuartusⅡ自带的仿真工具生成的激励,花费的时间长,而且与实际处理结果有一定的偏差,无法有效的验证整体模块的功能,同时也赡以对其进行实时模拟。本文在使用QuartusⅡ自带仿真工具的基础上,将综合后得到的结果导入Modesim 6.0中,编写Testbench提供仿真激励对逻辑分析仪的顶层模块进行仿真。通过比较整体功能进行验证。图6为逻辑分析仪顶层模块仿真波形。


    由图6看出,3种采样模式分别为001,010,100。001采样模式被触发后显示后64个采样数据;010采样模式触发后显示前32个采样数据和后32个采样数据;100采样模式触发后显示前64个采样数据。清除采样信号低有效,开始一个新的采样触发。经过调试,该逻辑分析仪采样频率为100 MHz。在输入采样信号的情况下,能够得到比较不错的波形。图7是在该采样频率下观察到的波形。

6 结语
    结果表明,该逻辑分析仪以每8个像素为单元作为一个采样数据的显示长度,最多16路信号捕获输入通道,1路信号触发通道,3种信号采样模式,数据的分析范围和质量得到提高,可方便科研、教学使用。

 

 

 

关键字:逻辑分析仅  FPGA  采样  移位寄存器 引用地址:M4K块移位寄存器数据读进方式的逻辑分析仪设计

上一篇:气敏传感器QM-N5在矿井中的应用
下一篇:UWB技术应用介绍

推荐阅读最新更新时间:2024-05-02 21:47

安富利X-fest台北研讨会 剖析Xilinx FPGA创新应用
    安富利电子元件X-fest 2012全球系列研讨会近日在台北举行。X-fest是为期一天的FPGA、ARM MCU’s、DSP和嵌入式系统开发培训活动。 安富利电子元件亚洲区总裁黄建雄表示:「于北京举办的X-fest成功获得研发人员热烈且广大迴响;研发人员表示X-fest活动能为他们的工作带来正面帮助。藉由活动,研发人员对于如何利用新技术来设计新产品这部份上获益匪浅。此次X-fest活动创纪录的人数证明我们不仅有能力举办符合客户和策略伙伴需求的活动,也实现了我们为客户提供附加价值的承诺。」 安富利科匯中国区及安富利杨氏总裁徐嘉酿表示:「安富利致力为客户带来新技术,今年的X-fest研讨会以革命性的28奈米(nm
[嵌入式]
温控系统的信号采样放大及A/D转换电路设计
一.简介   本温度控制和显示系统是一个闭环反馈控制系统,它用温度传感器将检测到的温度信号经放大,A/D转换后送入计算机中,与设定值进行比较,得到偏差。对此偏差按PID算法进行修正,返回对应工况下的可控硅导通时间,调节电热丝的有效加热功率,从而实现对铁块的温度控制。   系统采用AT89C52芯片为CPU,外扩了8K的数据存储器6264。AT89C52是美国ATMEL公司生产的低电压,高性能的CMOS 8位单片机,片内含8K的可反复擦写的只读程序存储器(PEROM)和256bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度,非易失性存储技术生产,与标准的MCS-51指令系统及8052产品引脚兼容,片内置通
[模拟电子]
基于FPGA的数字波束形成技术的工程实现
  数字波束形成技术充分利用阵列天线所获取的空间信息,通过信号处理技术使波束获得超分辨率和低副瓣的性能,实现了波束的扫描、目标的跟踪以及空间干扰信号的零陷,因而数字波束形成技术在雷达信号处理、通信信号处理以及电子对抗系统中得到了广泛的应用。数字波束形成是把阵列天线输出的信号进行AD采样数字化后送到数字波束形成器的处理单元,完成对各路信号的复加权处理,形成所需的波束信号。只要信号处理的速度足够快,就可以产生不同指向的波束。由于数字波束形成一般是通过DSP或FPGA用软件实现的,所以具有很高的灵活性和可扩展性。本文主要介绍了一个自适应波束形成器的原理及其实现方法,结合当今最先进的可编程芯片,包括数字信号处理器(DSP),现场可编程逻辑
[嵌入式]
基于<font color='red'>FPGA</font>的数字波束形成技术的工程实现
电加热炉温度单片机控制系统
0 引 言 电加热炉随着科学技术的发展和工业生产水平的提高,已经在冶金、化工、机械等各类工业控制中得到了广泛应用,并且在国民经济中占有举足轻重的地位。对于这样一个具有非线性、大滞后、大惯性、时变性、升温单向性等特点的控制对象,很难用数学方法建立精确的数学模型,因此用传统的控制理论和方法很难达到好的控制效果。 单片机以其高可靠性、高性能价格比、控制方便简单和灵活性大等优点,在工业控制系统、智能化仪器仪表等诸多领域得到广泛应用。采用单片机进行炉温控制,可以提高控制质量和自动化水平。 1 单片机炉温控制系统结构 本系统的单片机炉温控制系统结构主要由单片机控制器、可控硅输出部分、热电偶传感器、温度变送器以及被控对象组成。如图1所
[应用]
基于ARM和FPGA的硬件平台实现了具有高开放性特征的嵌入式数控系统
引言 现有的数控系统中多采用工控机加运动控制卡的计算机数控系统方案进行运动控制器的设计。随着工控机整体功能日趋复杂,对运动控制系统的体积、成本、功耗等方面的要求越来越苛刻。现有计算机数控系统在运动控制方面逐渐呈现出资源浪费严重、实时性差的劣势。此外,数控系统的开放性、模块化和可重构设计是目前数控技术领域研究的热点,目的是为了适应技术发展和便于用户开发自己的功能。本文基于ARM和FPGA的硬件平台,采用策略和机制相分离的设计思想,设计了一种具有高开放性特征的嵌入式数控系统。该数控系统不仅具备了以往大型数控系统的主要功能,还具备了更好的操作性和切割性能,而且在开放性方面优势更为突出,使数控系统应用软件具有可移植性和互换性。 1 基
[单片机]
基于ARM和<font color='red'>FPGA</font>的硬件平台实现了具有高开放性特征的嵌入式数控系统
Achronix推出基于FPGA的加速自动语音识别解决方案
提供超低延迟和极低错误率(WER)的实时流式语音转文本解决方案,可同时运行超过1000个并发语音流 加利福尼亚州圣克拉拉,2023年11月——高性能FPGA芯片和嵌入式FPGA(eFPGA IP)领域的领先企业Achronix半导体公司日前自豪地宣布: 正式推出Achronix与Myrtle.ai合作的最新创新——基于Speedster7t FPGA的自动语音识别(ASR)加速方案 。这一变革性的解决方案,实现了高精度和快速响应,可将超过1000个并发的实时语音流转换为文本,同时性能比竞争方案高20倍。Achronix于2023年11月12日至17日在丹佛举办的“2023年超级计算大会(SC23)”上演示了该方案。 该解决
[嵌入式]
Achronix推出基于<font color='red'>FPGA</font>的加速自动语音识别解决方案
基于FPGA的多路脉冲重复频率跟踪器
摘要:在反辐射导弹的雷达导引头中,信号跟踪器的实时性是影响系统性能的重要因素之一。介绍了利用高性能FPGA丰富的资源实现的多路脉冲重复频率跟踪器,它解决了在密集信号环境下信号跟踪的实时性问题,减小了系统体积。经过实验验证,其各项指标均达到了设计要求。 关键词:反辐射导弹 信号跟踪 现场可编程门阵列 随着高科技的迅速发展,现代战争已经不仅是传统意义战场上的较量,电子战已经成为决定战争胜负的重要因素之一。反辐射导弹在电子战中扮演着重要的角色,它在战争中可以有效地压制或摧毁敌方武器系统中的雷达,使敌方武器系统失去攻击能力,取得制空权,发挥己方的空中优势。在反辐射导弹中引导攻击目标的是雷达导引头,它截获目标雷达的信号并检测出信号入射
[半导体设计/制造]
赛灵思声明召回Spartan-3 FPGA
  据可编程逻辑供应商赛灵思(Xilinx)的网站显示,该公司宣布召回2005年9月至今年4月末生产的Spartan-3、Spartan-3E和Spartan-3L FPGA。这次召回产品的数量可能相当庞大。   据该公司的网站,某些批次的wire-bonded PBGA封装可能存在非特定的制造封装缺陷,可能造成潜在的质量与可靠性风险。这次召回的产品的日期代码在0537和0617之间。   赛灵思的发言人表示:“我们目前了解道的情况是,该问题对Spartan-3产品的质量影响有限。”该发言人强调,导致上述问题的根本原因是封装/装配,而不是硅片,而且只有一家客户证实出现问题。该发言人表示,赛灵思的封装/装配供应商已排除了这个问题
[焦点新闻]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved