基于Simulink的滑模软起动器仿真研究

发布者:GoldenSunrise最新更新时间:2012-03-14 来源: 山西电子技术 关键字:软起动器  Simulink  转矩控制 手机看文章 扫描二维码
随时随地手机看文章
0 引言
    不同的电机软起动方式具有各异的特性。斜坡起动、限流起动解决电机起动过程产生的过大冲击电流,这种起动方式适合于轻载电机起动;转矩控制起动、分级变频起动可以解决使用降压起动带来的起动转矩过小的问题,适用于重载的电机起动。构建适应不同工作场合需
要的电动机滑模软起动控制器具有工程应用价值。滑模软起动装置集斜坡起动、限流起动、转矩控制起动、分级变频起动等方式于一体,通过改变对交流模块输入的晶闸管导通脉冲选择电动机的软起动方式,进而扩大软起动装置的使用范围。本文在Matlab/Simulink环境下对滑模软起动进行了建模仿真研究。

1 软起动器的控制系统结构
1.1 仿真系统建模
    在Mafiab/Simulink环境中,建立一个软起动器的模型,其综合了斜坡软起动、限流软起动、转矩控制软起动及分级变频软起动这几种软起动方式。并且使该软启动器实现能够让用户根据需要,选择一种适合用于电机软起动的方式进行起动。图1是基于Simulink的系统仿真
框图。在仿真系统中,主要包括了滑模软起动控制、交流调压、电机和电气测量模块等单元。


    滑模软起动控制模块是由4个软起动子模块(four soft start)和软起动方式滑模选择模块(switch subsystem)组成。输入量有电机定子电流单相有效值RMS、电机A相输入的电压值Va与电流值Ia和同步电压。

[page]

1.2 触发脉冲子模块
    在整个系统中的晶闸管的触发脉冲主要使用6脉冲发生器模块来产生,并且能够对6脉冲进行延迟,生成一组可控的6相脉冲波。产生的6相脉冲在4个软起动方式中都有使用。其中图4是六脉冲发生器的子系统。


    在6脉冲发生器模块中,有两个常量“Pwidth”和“freq”,“Pwidth”的值为6相触发脉冲的宽度;“freq”为同步电压频率;从“alpha deg”输入端输入触发角的值,可以是一组连续变量,通过对“alpha_deg”的值生成一组可控的晶闸管导通的6相脉冲;“block”是6脉冲发生器的锁存端,输入端为零时,模块正常工作产生一组6相脉冲;当输入端为高电平时,启动截止保护,这时脉冲将不再产生,晶闸管也就不能导通。
    但是在6脉冲生成器模块中,其脉冲生成是根据电源的同步电压进行计算,子系统中的频率设置和同步电压的频率是保持一致的,生成的6相脉冲频率不可改变。在分级变频软起动模块中,晶闸管的6相导由6相脉冲发生器产生的一组基频的脉冲波和一组低频的脉冲进行与运算
生成,这组脉冲是以低频脉冲的频率做为频率,以基波脉宽作为脉冲宽度,并且可以通过“alpha deg”对脉冲进行延迟。这样生成一组低频的导通角可控的低频脉冲,满足分级变频软起动的脉冲要求。在图5分级变频脉冲合成模块中,频率分别为F/2、F/4、F/5、F/7的方波脉冲和6脉冲发生器产生的脉冲进行与运算,生成F/2、F/4、F/5、F/7频率方波,并根据输入的时间选择各个分级频率运行时间,完成分级变频软起动控制。

[page]

2 软起动控制方式
    在软起动的仿真系统中,软起动模块中有四种软起动方式的子模块,分别是斜坡软起动、限流软起动、分级变频软起动和转矩控制软起动子模块。四种软起动是通过对晶闸管的导通角(alpha)不同计算方法,产生相适应的四种软起动方式的六脉冲,达到各自的软起动的目的。
2.1 斜坡软起动
    斜坡式软起动是从初始角开始以斜坡的方式增加电动机上的电压直到额定电压的软起动方式。斜坡软起动的初始角可以根据情况进行设置,起动时间也可以由用户调节。图6是斜坡软启动alpha角计算的子模块。“uini”是软起动的初始角,“uincr”是软起动的斜坡增长的斜率控制。


    斜坡电压软起动是一种常见软起动方式,这种起动方式的起动时间比直接起动长,起动电流比直接起动小,起动转矩不高,容易实现。
2.2 限流起动
    限流起动是在电动机的起动过程中限制其起动电流不超过某一设定值。这种起动方法主要用在轻载起动的降压起动,其输出电压从零开始迅速增长,直到其输出电流达到预先设定的电流限制,然后在保持输出电流小于电流设定值的条件下逐渐升高电压,直到额定电压,从而使电动机转速逐渐升高,直到额定转速。图7是基于Matlab/Simulink搭建的限流软启动alpha计算子模块,alpha计算是在电流的闭环控制使用模糊控制器计算alpha角,调节电机两端电压。


    限流软起动采用电流反馈的闭环模糊控制调节,可以快速、准确地触发晶闸管,避免大电流的冲击,很好地限制起动电流。
2.3 转矩控制起动
    转矩控制起动是控制电动机的起动转矩由小到大线性上升,并根据起动转矩变化计算晶闸管的导通角进而控制电机的输入电压,使电机的转矩满足电动机使用要求。图8是转矩控制软起动alpha角计算子模块。


    转矩控制软起动的优点是起动平滑、柔性好,对拖动系统有利,同时减少对电网的冲击,是最优的负载起动方式。
2.4 分级变频软起动
    分级变频(离散频率法)就是使传统软起动器输出电压的频率从一个较低的值开始,分级上升,最后达到50Hz。分级变频虽然可以实现变频,但不能使频率连续地变化,只能使频率分级变化,而且各级频率都是50Hz的n分之一(即50Hz的分频),实现较高起动转矩。图9是分级变频软起动导通角alpha的计算子模块。在低频起动过程中,为保持电机的主磁通不变,要相应地降低定子电压,通过计算得到电机在F/2、F/4、F/5、F/7的导通角alpha的大小,在频率达到50Hz后,导通角缓慢减小到0,使电动机上的电压达到额定电压,完成软起动。

[page]


    分级变频起动能有效提高电动机起动转矩,可使电动机在重负载的情况下平滑起动。

3 仿真结果分析
    在matlab/simulink仿真环境中,通过对图1中软起动方式的选择,对斜坡控制、限流控制、转矩控制和分级变频控制进行仿真。分别得到四种软起动的定子有效电流、转速和转矩的波形图(见图10)。
    电机参数为10kW、220V、50Hz,极对数为2,定、转子端的标么值参数分别为:Rs=0.0401Ω;Rr=0.0377Ω;Ls=Lr=1.0349Ω。
    通过对仿真结果的分析可以到处结论:斜坡起动是一种开环的起动控制方式,能够降低电机的起动电流,起动转矩不高,操作简单;限流软起动是采用电流的闭环控制,能够很好地限制电机的起动电流,但是起动时间较长,起动转矩不高;转矩控制软起动转矩能够平滑地上升,降低转矩突变给拖动系统造成的影响,是很好的负载起动;分级变频起动能够限制电动机的起动电流,起动转矩大,是一种有效的高转矩起动方法,适用于大负载的电机起动。

4 结论
    随着电动机的广泛使用,对电机起动的要求越来越高,对软起动装置也使用越来越多。滑模软起动器几种软起动方式的改变主要是通过对触发脉冲导通角(alpha)不同计算方法实现的,不需要对软起动装置的硬件作大的改变,也不会增加硬件成本。滑模软起动器是综合了多种软起动方式的软起动装置,通过滑模控制对软起动方式进行选择,实现多种软起动,扩大了软起动装置的应用范围,提高了软起动装置的实用性,具有很大实用价值。

关键字:软起动器  Simulink  转矩控制 引用地址:基于Simulink的滑模软起动器仿真研究

上一篇:基于PMM8731和SI-7300的步进电机驱动电路
下一篇:基于PLC的自动化立体仓库系统设计

推荐阅读最新更新时间:2024-05-02 21:57

异步电机直接转矩控制学习笔记
导读:本期文章对异步电机直接转矩控制进行梳理学习。DTC包括转速外环、磁链观测器、滞环和电压矢量离线开关表。离线电压矢量开关表分为两种:添加零矢量和未添加零矢量。 一、引言 不同于矢量控制技术,DTC利用Bang-Bang控制(滞环控制)产生PWM信号,对逆变器的开关状态进行最佳控制,从而获得转矩的高动态性能。DTC具有自己的特点,它在很大程度上解决了矢量控制中存在的一些问题,如计算的复杂特性,易受电动机参数变化的影响,实际性能难以达到理论分析结果等。DTC摒弃了传统矢量控制中的解耦思想,而是将转子磁通定向更换为定子磁通定向,取消了旋转坐标变换,减弱了系统对电机参数的依赖性,通过实时检测电机定子电压和电流,计算转矩和磁链的幅值
[嵌入式]
异步电机直接<font color='red'>转矩</font><font color='red'>控制</font>学习笔记
PROFIBUS-DP在电机软起动器中的应用
1 前言   现场总线技术是当今世界各国关注的热点课题,以现场总线为基础的全数字控制系统是 21 世纪自动化控制系统的主流。PROFIBUS-DP是一种经过优化的高速、廉价的通信连接,专为自动控制系统和设备级分散I/O之间通信设计,使用PROFIBUS-DP模块可取代价格昂贵的24V或0~20mA并行信号线,用于分布式控制系统的高速数据传输。PROFIBUS-DP主要应用于现场设备级,它的响应时间从几百 到几百ms,数据传输速率为9.6kbit/s~12Mbit/s,传输的数据容量为每个报文多达244个字节,传输介质为屏蔽双绞线或光缆,被广泛应用于楼宇自动化、水电厂管理和工业过程自动化控制系统中。 2 软起动控制器中PRO
[嵌入式]
基于Matlab/Simulink光伏电池模型的研究
0 引言     随着经济的发展,人口的增加,化石能源逐步消耗,能源危机问题日益严重。在这样的背景下,太阳能作为一种巨量的可再生能源,引起了人们的重视,各国政府正在逐步推动太阳能光伏发电产业的发展。但是,大多数的光伏发电系统都是基于经验公式进行设计的,为了对整个设计系统进行验证和优化,有必要研究适用于光伏发电系统工程设计应用的仿真模型。由于太阳能电池阵列是光伏发电系统的核心部件,所以在光伏发电系统中,对太阳能电池阵列仿真模型的研究至关重要。     太阳能电池技术发展很快,目前比较成熟且广泛应用的是经归类的太阳能电池。在2009年,全球太阳能电池的产量为1 0231MWp,到2011年预计达到1.5 GWp,比2010年增加50%
[电源管理]
基于Matlab/<font color='red'>Simulink</font>光伏电池模型的研究
ABB变频器主从控制在工业上的应用
  1 引言   近年来,随着我国自动化技术的迅速发展,工业自动化取得了长足的进步。变频器由于性能稳定、节能环保、性价比高,在工业各个领域得到了广泛的应用。其中,冶金、造纸等行业对电气控制系统的转速和转矩的动静态指标有着较高的要求,在转炉或纸机的电气控制上要求各部分驱动电机转矩或转速严格同步,否则,无法维持正常生产,产品质量难以保证。然而,在实际生产中,有许多因素都会干扰电机的同步控制,例如电网电压的波动、频率的变化、负载的突变、温度的改变等。因此,为了得到理想的同步控制效果,采用主从控制是比较好的解决方案之一。   2 同步运行方案的选择   工业中同一台设备或者同一条生产线的各个运动部分通常采用一台大功率电机或多台
[电源管理]
ABB变频器主从<font color='red'>控制</font>在工业上的应用
车载逆变电源的Saber与Simulink联合仿真
0 引言     汽车早已进入大众家庭,而现在已变成了集娱乐功能为一体的交通工具。而要具有娱乐功能,汽车上的各种电器需要电源供电。普通的汽车电源是12 V蓄电池,而常用电气设备主要使用220 V、50 Hz交流电。因此需要将直流电逆变成交流电。常见的逆变电源的结构,都是先通过高频变压器升压成高压直流,再通过桥式逆变为工频交流电。电路仿真软件主要有Spice,Matlab/Simulink,Saber等,各个软件都有其自身的特点。Matlab/Simulink在控制系统仿真方面具有优势,并且提供了很多的控制工具箱;而Saber软件具有精确的硬件元器件模型库,能为仿真带来更精确的结果,同时其在开关电源仿真上收敛性很好,仿真结果分析查看工
[电源管理]
车载逆变电源的Saber与<font color='red'>Simulink</font>联合仿真
意法半导体推出无感零速/高转矩电机控制嵌入式软件
2023年12月21日,中国– 意法半导体发布了STM32 ZeST*(零速满转矩)软件算法。该算法运行在STM32微控制器上,让无感电机驱动器能够在零转速时产生最大转矩 。意法半导目前正在与指定客户分享这个算法。该算法首次在通用电机驱动器中提供零速满转矩电机控制功能,实现了以前无法实现的电机运行平顺性和可预测性。 电动工具、电动窗帘、洗衣机、自动割草机、空调系统、电动自行车等产品设备要求电机按照正确方向最大转矩启动和/或最大负载快速启动,同时消耗最小的电能。普通无感电机驱动器不能确定电机在零速时的转子位置,因此,无法满足这些设备的要求。此前,要想保证定位准确、高能效和正确操作,通常需要增装硬件位置传感器或使用特殊类型的
[嵌入式]
意法半导体推出无感零速/高<font color='red'>转矩</font>电机<font color='red'>控制</font>嵌入式软件
MathWorks 推出从 MATLAB 和 SIMULINK 生成针对 ARM CORTEX-M 处理器的优化代码的支持包
MathWorks 近日宣布,推出 Simulink、 DSP System Toolbox 和 Embedded Coder 支持包,以生成针对 ARM® Cortex ®-M 系列处理器的优化代码。这些 MATLAB 和 Simulink 支持包现与 Release 2013b一起发布,提供三个级别的集成支持: * Simulink、DSP System Toolbox 和 Embedded Coder 可以基于 ARM 的 DCMSIS DSP 库生成DSP 滤波器的性能优化代码(适用于任何 ARM Cortex-M 处理器) * Simulink 和 Embedded Coder 可以基于 GCC 和 QEMU 主机模
[嵌入式]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved