数字电路PCB的EMI控制技术

发布者:火箭飞人最新更新时间:2012-03-16 来源: 21ic 关键字:数字电路  PCB  EMI控制技术 手机看文章 扫描二维码
随时随地手机看文章

随着IC器件集成度的提高、设备的逐步小型化和器件的速度愈来愈高,电子产品中的EMI问题也更加严重。从系统设备EMC/EMI设计的观点来看,在设备的PCB设计阶段处理好EMC/EMI问题,是使系统设备达到电磁兼容标准最有效、成本最低的手段。本文介绍数字电路PCB设计中的EMI控制技术。

一、EMI的产生及抑制原理

EMI的产生是由于电磁干扰源通过耦合路径将能量传递给敏感系统造成的。它包括经由导线或公共地线的传导、通过空间辐射或通过近场耦合三种基本形式。EMI的危害表现为降低传输信号质量,对电路或设备造成干扰甚至破坏,使设备不能满足电磁兼容标准所规定的技术指标要求。

为抑制EMI,数字电路的EMI设计应按下列原则进行:

●根据相关EMC/EMI技术规范,将指标分解到单板电路,分级控制。

●从EMI的三要素即干扰源、能量耦合途径和敏感系统这三个方面来控制,使电路有平坦的频响,保证电路正常、稳定工作。

●从设备前端设计入手,关注EMC/EMI设计,降低设计成本。

二、数字电路PCB的 EMI控制技术

在处理各种形式的EMI时,必须具体问题具体分析。在数字电路的PCB设计中,可以从下列几个方面进行EMI控制。

1.器件选型

在进行EMI设计时,首先要考虑选用器件的速率。任何电路,如果把上升时间为5ns的器件换成上升时间为2.5ns的器件,EMI会提高约4倍。EMI的辐射强度与频率的平方成正比,最高EMI频率(fknee)也称为EMI发射带宽,它是信号上升时间而不是信号频率的函数:fknee =0.35/Tr (其中Tr为器件的信号上升时间)

这种辐射型EMI的频率范围为30MHz到几个GHz,在这个频段上,波长很短,电路板上即使非常短的布线也可能成为发射天线。当EMI较高时,电路容易丧失正常的功能。因此,在器件选型上,在保证电路性能要求的前提下,应尽量使用低速芯片,采用合适的驱动/接收电路。另外,由于器件的引线管脚都具有寄生电感和寄生电容,因此在高速设计中,器件封装形式对信号的影响也是不可忽视的,因为它也是产生EMI辐射的重要因素。一般地,贴片器件的寄生参数小于插装器件,BGA封装的寄生参数小于QFP封装。

2.连接器的选择与信号端子定义

连接器是高速信号传输的关键环节,也是易产生EMI的薄弱环节。在连接器的端子设计上可多安排地针,减小信号与地的间距,减小连接器中产生辐射的有效信号环路面积,提供低阻抗回流通路。必要时,要考虑将一些关键信号用地针隔离。

3.叠层设计

在成本许可的前提下,增加地线层数量,将信号层紧邻地平面层可以减少EMI辐射。对于高速PCB,电源层和地线层紧邻耦合,可降低电源阻抗,从而降低EMI。

4.布局

根据信号电流流向,进行合理的布局,可减小信号间的干扰。合理布局是控制EMI的关键。布局的基本原则是:

●模拟信号易受数字信号的干扰,模拟电路应与数字电路隔开;

●时钟线是主要的干扰和辐射源,要远离敏感电路,并使时钟走线最短;

●大电流、大功耗电路尽量避免布置在板中心区域,同时应考虑散热和辐射的影响;

●连接器尽量安排在板的一边,并远离高频电路;

●输入/输出电路靠近相应连接器,去耦电容靠近相应电源管脚;

●充分考虑布局对电源分割的可行性,多电源器件要跨在电源分割区域边界布放,以有效降低平面分割对EMI的影响;

●回流平面(路径)不分割。[page]

5.布线

●阻抗控制:高速信号线会呈现传输线的特性,需要进行阻抗控制,以避免信号的反射、过冲和振铃,降低EMI辐射。

●将信号进行分类,按照不同信号(模拟信号、时钟信号、I/O信号、总线、电源等)的EMI辐射强度及敏感程度,使干扰源与敏感系统尽可能分离,减小耦合。

●严格控制时钟信号(特别是高速时钟信号)的走线长度、过孔数、跨分割区、端接、布线层、回流路径等。

●信号环路,即信号流出至信号流入形成的回路,是PCB设计中EMI控制的关键,在布线时必须加以控制。要了解每一关键信号的流向,对于关键信号要靠近回流路径布线,确保其环路面积最小。

对低频信号,要使电流流经电阻最小的路径;对高频信号,要使高频电流流经电感最小的路径,而非电阻最小的路径(见图1)。对于差模辐射,EMI辐射强度(E)正比于电流、电流环路的面积以及频率的平方。(其中I是电流、A是环路面积、f是频率、r是到环路中心的距离,k为常数。)

因此当最小电感回流路径恰好在信号导线下面时,可以减小电流环路面积,从而减少EMI辐射能量。

●关键信号不得跨越分割区域。

●高速差分信号走线尽可能采用紧耦合方式。

●确保带状线、微带线及其参考平面符合要求。

●去耦电容的引出线应短而宽。

●所有信号走线应尽量远离板边缘。

●对于多点连接网络,选择合适的拓扑结构,以减小信 号反射,降低EMI辐射。

 

 

6.电源平面的分割处理

●电源层的分割

在一个主电源平面上有一个或多个子电源时,要保证各电源区域的连贯性及足够的铜箔宽度。分割线不必太宽,一般为20~50mil线宽即可,以减少缝隙辐射。

●地线层的分割

地平面层应保持完整性,避免分割。若必须分割,要区分数字地、模拟地和噪声地,并在出口处通过一个公共接地点与外部地相连。

为了减小电源的边缘辐射,电源/地平面应遵循20H设计原则,即地平面尺寸比电源平面尺寸大20H(见图2),这样边缘场辐射强度可下降70% 。

三、EMI的其它控制手段

1. 电源系统设计

●设计低阻抗电源系统,确保在低于fknee频率范围内的电源分配系统的阻抗低于目标阻抗。

●使用滤波器,控制传导干扰。

●电源去耦。在EMI设计中,提供合理的去耦电容,能使芯片可靠工作,并降低电源中的高频噪声,减少EMI。由于导线电感及其它寄生参数的影响,电源及其供电导线响应速度慢,从而会使高速电路中驱动器所需要的瞬时电流不足。合理地设计旁路或去耦电容以及电源层的分布电容,能在电源响应之前,利用电容的储能作用迅速为器件提供电流。正确的电容去耦可以提供一个低阻抗电源路径,这是降低共模 EMI的关键。[page]

2. 接地

接地设计是减少整板EMI的关键。

●确定采用单点接地、多点接地或者混合接地方式。

●数字地、模拟地、噪声地要分开,并确定一个合适的公共接地点。

●双面板设计若无地线层,则合理设计地线网格很重要,应保证地线宽度>电源线宽度>信号线宽度。也可采用大面积铺地的方式,但要注意在同一层上的大面积地的连贯性要好。

●对于多层板设计,应确保有地平面层,减小共地阻抗。

3. 串接阻尼电阻

在电路时序要求允许的前提下,抑制干扰源的基本技术是在关键信号输出端串入小阻值的电阻,通常采用22~33Ω的电阻。这些输出端串联小电阻能减慢上升/下降时间并能使过冲及下冲信号变得较平滑,从而减小输出波形的高频谐波幅度,达到有效地抑制EMI的目的。

4.屏蔽

●关键器件可以使用EMI屏蔽材料或屏蔽网。

●对关键信号的屏蔽,可以设计成带状线或在关键信号的两侧以地线相隔离。

5.扩频

扩展频谱(扩频)的方法是一种新的降低EMI的有效方法。扩展频谱是将信号进行调制,把信号能量扩展到一个比较宽的频率范围上。实际上,该方法是对时钟信号的一种受控的调制,这种方法不会明显增加时钟信号的抖动。实际应用证明扩展频谱技术是有效的,可以将辐射降低7到20dB。

6.EMI分析与测试

●仿真分析

完成PCB布线后,可以利用EM I仿真软件及专家系统进行仿真分析,模拟EMC/EMI环境,以评估产品是否满足相关电磁兼容标准要求。

●扫描测试

利用电磁辐射扫描仪,对装联并上电后的机盘扫描,得到PCB中电磁场分布图(如图3,图中红色、绿色、青白色区域表示电磁辐射能量由低到高),根据测试结果改进PCB设计。

四、结语

随着新的高速芯片的不断开发与应用,信号频率也越来越高,而承载它们的PCB板可能会越来越小。PCB设计将面临更加严峻的EMI挑战,唯有不断探索、不断创新,才能使PCB板的EMC/EMI设计取得成功。

关键字:数字电路  PCB  EMI控制技术 引用地址:数字电路PCB的EMI控制技术

上一篇:基于数字移相器的逆变器系统相位跟踪控制
下一篇:线阵图像传感器TCD1208AP在桑蚕选种中的应用

推荐阅读最新更新时间:2024-05-02 21:57

2017年1月份北美PCB销量放缓
2017年3月6日,美国伊利诺伊州班诺克本 — IPC — 国际电子工业联接协会® 今日发布《2017年1月份北美地区PCB行业调研统计报告》。报告显示1月份PCB销量下降,订单出货比略有增强,为0.99。 2017年1月份北美PCB总出货量,与2016年同期相比,下降了4.0%;与上个月相比,1月份的出货量下降了15.6%。 2017年1月份,北美PCB订单量,与去年同期相比,下降了5.6%;与上个月相比,订单量下降了7.6%。 IPC市场调研总监Sharon Starr女士说:“对PCB行业的销售量和订单量来说,1月份通常比较缓慢;1月份北美PCB订单出货比仍在平衡点之下,这是连续三个月在均值下,不过已开始攀升至0.99,这
[半导体设计/制造]
2017年1月份北美<font color='red'>PCB</font>销量放缓
PCB设计之单片机控制板设计原则
  据不完全统计,我国每年因漏电而引起的触电事故、火灾造成数千人死亡和数十亿的经济损失,因此对可以防止漏电火灾及人身触电保护的漏电保护器的性能提出了更高的要求。本文介绍的漏电保护器动作特性自动测试系统,可测量漏电保护器的漏电动作电流值、分断时间和漏电不动作电流值,对提高漏电保护器工作的可靠性提供了主要技术参数,检测过程具有较高的自动化水平,可对在线运行与非在线运行的漏电保护器进行检测。   系统以LPC2132为核心,具有扩展测试电流的产生和调节模块、动作执行单元、电流检测电路以及键盘等外围设备。LPC2132是一个支持实时仿真和跟踪32位ARM7TDMI-S核的微控制器,1个10位8路A/D转换器,2个32位定时器/计数器,6路P
[单片机]
<font color='red'>PCB</font>设计之单片机控制板设计原则
PCB可靠性在汽车应用中至关重要
市场开发部总监JohnIsaac先生在电子设计自动化行业拥有超过40年的从业经验,专攻 PCB 和 IC 技术。职业生涯之初,他就职于 IBM, 主要负责用于 IBM 高端IC和PCB内部设计的电子设计自动化系统的开发。之后 Isaac 先生加盟明导,在PCB和IC产品部门担任多个营销职位。目前他主要负责该公司系统设计部门的全球市场开发工作。 2.前言、背景 汽车电子其实并非与其它复杂电子产品完全不同:多个中央处理器、网络、实时数据收集,以及极为复杂的 PCB。汽车行业的设计压力与其它类型的电子产品相似:设计时间短,市场竞争激烈。那么汽车电子与例如一些高端娱乐产品电子之间有什么区别?天壤之别!如果PCB在娱乐产品中发生故障
[嵌入式]
Cadence视频教程(第47讲)
[半导体设计/制造]
PCB组装厂精成科将与日本ELNA公司合作
据经济日报台北报道,华新丽华集团旗下PCB组装厂精成科将与日本ELNA公司合作,预定3月1日于东京签约,届时将由董事长焦佑衡出席。双方签约后,精成科预定将于4月初入主ELNA旗下PCB厂,为集团开拓车用PCB领域增添新动能。 全球PCB快捷打样服务商「捷多邦」了解到,精成科与日本ELNA公司签约仪式在3月1日举行,邀请函已陆续向日本媒体发出。邀请函提到,焦佑衡将率队出席签约活动,目标在此次联合签约仪式的合资合作后,一同开拓汽车零件相关业务联盟与发展。 市场看好精成科与ELNA合作后,将优化ELNA在马来西亚既有工厂营运,并直接供货日本车用电子大厂。 行业分析,该厂区原本最大产能可达月产105万呎,近年因生产良率不佳导致亏损,双
[EDA]
<font color='red'>PCB</font>组装厂精成科将与日本ELNA公司合作
Cadence FSP:FPGA-PCB系统化协同设计工具介绍
Cadence FPGA System Planner(FSP)是一款完整性高的FPGA-PCB系统化协同设计工具。此次主要为大家介绍FPGA System Planner的基本情况,详见原文。   在较新的FPGA设计中几乎有超过千个可编程的I/O引脚,若再包含多个FPGA时,工程师就会遇到初期规划I/O引脚,并配合后期layout placement时该如何最佳化的瓶颈及困难。Cadence OrCAD and Allegro FPGA System Planner便可满足较复杂的设计及在设计初级产生最佳的I/O引脚规划,并可透过FSP做系统化的设计规划,同时整合logic、schematic、PCB同步规划单个或多个FP
[模拟电子]
Cadence FSP:FPGA-<font color='red'>PCB</font>系统化协同设计工具介绍
Dialog拓展可配置混合信号IC领先地位,出货量超35亿套器件
  近日,高度集成电源管理、AC/DC电源转换、充电、固态照明(SSL)和蓝牙低功耗技术供应商 Dialog 半导体公司宣布,其可配置混合信号IC(CMIC)产品总出货量已超过35亿套。该里程碑印证了 Dialog 的可配置技术,包括非常成功的GreenPAK鈩�产品系列,已经成为市场的首要选择。下面就随模拟电子小编一起来了解一下相关内容吧。    Dialog 的CMIC能够帮助设计工程师以更简单的方式快速开发新型电子产品。为了进一步支持设计工程师使用GreenPAK CMIC,Dialog推出了一系列的开发工具,包括支持近期发布的GreenPAK SLG46826和SLG46824 两颗CMIC。   到目前,Dialog共
[模拟电子]
通过IP PAD物理设计重用节省PCB设计时间
通过重用现有的IP 物理设计重用来节省时间。
[机器人]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved