蓄电池电机车调速系统分析及其改造设计

发布者:HarmoniousCharm最新更新时间:2012-04-16 来源: eefocus关键字:转矩控制  变频调速  矿用电机车 手机看文章 扫描二维码
随时随地手机看文章

1 引言

矿用电机车是煤矿工业的重要运输工具。由于煤矿井下的工作环境十分恶劣,对电机车的电气驱动系统要求很高。然而,当前矿用电机车采用结构复杂、造价昂贵、故障率高、维修费用大的直流电机驱动,调速系统还是采用的原始落后的电阻降压调速方式,这种多级触头变阻调速器常因触头产生较强火花而烧损,所以维修量大。同时,电机车带电阻运行导致电能浪费很大。对于高瓦斯矿井,普遍采用防爆型蓄电池电机车作为运输材料和矸石的工具。多年来,蓄电池电机车一直采用直流电动机串电阻调速方式,从而使20~25%的电能消耗在电阻上,造成电能的浪费。特别是蓄电池电机车,由于电能消耗过快,使蓄电池的充电间隔缩短,蓄电池寿命减少。近几年来,随着科学技术的发展,交流电机的调速问题已经获得圆满的解决。交流电机的调速系统不但性能同直流电机的性能一样,而且成本和维护费比直流电机系统更低,可靠性更高。用交流电动机取代直流电动机进行调速势在必行,并且交流电动机有着直流电动机无法比拟的优势。由于直流调速带有电阻器运行,电能消耗较大,交流变频调速由于不用高耗能的电阻,节电率可达35%。如果电机车设置成再生回馈制动,可以利用电机车减速或下坡时将电机发出的电能回馈给蓄电池,这样可以大大节约电能,延长充电时间。

2 异步电动机的四象限特性及能量再生

三相交流异步电机传动系统具有结构简单、工作可靠、造价低廉,效率高,节约能源等优点,因而被广泛用语蓄电池电机车的改造工程中。

由于矿用电机车工作于井下恶劣的环境中,调速系统处于频繁的起动、制动、加减速等状态,这样一来,我们就能充分利用三相交流异步电动机的四象限特性进行调速制动:第一象限和第三象限是电动机的运行状态,分别为正、倒转;第二象限和第四象限是电动机的发电状态,分别为正、倒转。由于蓄电池电机车采用的是直接转矩的方式进行变频调速。

电机车在减速运行过程或急刹车时都将发生能量再生。先假定三相异步电动机定子绕组中通以三相电流,极性为i1a>0、i1b<0、i1c<0(下标:“1”表示定子,“2”表示转子,字母上加点表示向量),该电流将在电动机气隙内形成按正弦规律分布,并以同步转速旋转的磁动势f1,如图1。f1先建立气隙主磁场bm(фm),bm是个旋转磁场。当变频器驱动异步电动机减速运行时,旋转磁场同步转速no总是先于转子转速n下降,即n0m切割定子、转子绕组,并在定子、转子绕组内感应出定子电动势e1a、e1b、e1c和转子电动势e2a、e2b、e2c,于是转子回路中就有三相电流i2a、i2b、i2c。与气隙磁通фm相互作用,产生了电磁制动转矩,方向与n0相反,制止转子旋转。i1形成的励磁磁动势f1,i2形成的励磁磁动势f2。设相序为a—b—c的定子电流所产生的旋转磁场为逆时针方向,由于n0o。由于转子以转速n逆时针旋转,因此f2的实际转速为n2=n-△n=no,方向为逆时针,即f1和f2都逆时针旋转,转速都为n2。换句话说,f1和f2保持相对静止,两者之间无相对运动。

异步电动机带负载时气隙内产生旋转磁场bm的正是这两个相对静止的磁动势f1和f2的合成磁动势fm作用的结果,即f1=fm+(-f2),此式表示:异步电动机的定子磁动势包含两个分量:产生气隙主磁通φm的励磁磁动势fm和抵消由于转子电流产生的转子磁动势f2的部分(-f2)。

因为n00-n/n<0,所以转子感应电动势se’2反向。i’2落后于e’2的φ2角度处于90°~180°之间,转子电流的有功分量i’2a《0,而转子电流的无功分量i’2r》0。

异步电动机处于减速时相当于异步发电机,即其向量图如图所示。u1和i1之间的相角φ1》90°,此时定子的有功功率为负值,即定子绕组向直流侧回馈电能,而定子的无功功率为正值。站在电动机的角度上看,异步电动机吸收了负的有功功率和滞后的无功功率,前者输出给电网,后者用于励磁。[page]

3 电机车回馈制动的控制

电动机等效电路如图2所示。

假设电机所带负载的机械能基本上被电机内部所消耗,于是有

当电机负转差率位于范围时,系统的机械能经电机转化为电能向蓄电池回馈。同时电机不出现过流,也就是反馈的电能不能被电池吸收的部分,可以由电机本身承受消耗而不出现过流当转差率变化超过该范围时,机械能经电机转化的电能无法有效回馈给电池,而剩余部分的能量在电机的线圈内阻中又无法完全消耗,因此容易出现过流。所以,从简化控制的角度出发,当控制转差率在s1≥s≥s2范围内变化时,再生制动过程就可以避免出现过流。

本文提出的再生制动方法在直接转矩控制(dtc)中。首先观测定子磁链,控制定子磁链的幅值为恒定然后选择零矢量、非零矢量来调节瞬时转差,控制输出转矩恒定,所以,由磁链环节观测定子磁链的幅值及相位,并且选择矢量控制磁链幅值大小;转矩控制环节(与磁链控制环节相结合)选择矢量控制磁链的旋转速度。系统采用了直接转矩控制方式,其磁链控制环节可以有效的控制磁链的偏差,在这种情况下可以保证输出的电流谐波少,运行平稳。而在直接转矩控制的基础上实现的再生制动控制,就是使定子频率跟踪转子速度变化,只要能保证转差率的变化范围,就可以实现系统在制动过程中不出现过流。而且制动效果的强弱可以通过调节转差率和定子磁链负值来实现。

4 仿真结果

对以上建立的新型直接转矩控制异步电动机变频调速系统进行仿真实验。三相逆变器开关器件采用igbt,反并联反馈二极管,igbt的缓冲电阻rs=10kω,缓冲电容cs=10-3μf。仿真实验所采用的异步电动机参数为:额定功率pn=12kw,额定频率fn=50hz,ψn=0.95wb,rs=0.16891ω,rr=0.13973ω,ls=0.02877h,lm=0.02777h,lr=0.0289h,np=2,j=0.1349kg.m2。控制系统参数:ψ*s=0.95wb,速度给定为150rad/s,负载转矩给定tm=15n.m,转矩限幅值为80n.m,pi调节器的比例系数kp=50,积分系数ki=130,直流侧电压udc=600v。

首先速度给定设为150rad/s,等到系统稳定以后,再将速度给定设为-150rad/s,观察其磁链,速度,转矩,线电流,直流侧电流波形。

从图3波形可以看出,异步电动机处于加速减速反转等运行状态,从正向加速到回馈制动,最后到反向加速至稳定状态,实现异步电动机的四象限特性。

5 结束语

我国矿用蓄电池电机车多数采用的是直流电动机串电阻调速,若是课题的成功得以顺利的应用于煤矿实际中,无论是电机车的调速性能,牵引能力,承载量和维修量等方面都有全面的提升,另外,从经济效益出发,蓄电池电机车利用制动对蓄电池进行充电,节约了大量的电能,延长蓄电池电机车的工作时间,减少了蓄电池年平均充电数,延长了蓄电池的使用寿命,大大提高了经济效益。

关键字:转矩控制  变频调速  矿用电机车 引用地址:蓄电池电机车调速系统分析及其改造设计

上一篇:混合电动车电动机的MotorSolve设计技巧
下一篇:双接收头在智能小车系统中的应用

推荐阅读最新更新时间:2024-05-02 22:00

基于DSP和IPM的变频调速系统的硬件设计
  引言   变频调速技术广泛应用于工业领域。随着电力电子控制技术及元器件的不断发展,变频调速系统的集成度、智能化程度越来越高,硬件构成也越来越紧凑、简单。DSP(数字信号处理器)+IPM(智能功率模块)就是变频调速系统最新的发展方向之一。   在DSP+IPM构成的变频调速系统中,充分利用了DSP高速运算、配置丰富及IPM控制信号接口简单、保护完善的特点,使得系统元器件数大为减少、结构紧凑,而性能及可靠性却大为提高,缩短了产品开发周期,提高了产品的竞争力。   笔者为某设备所做的一个变频调速子系统就采用了DSP+IPM的结构。下面介绍该系统的硬件设计方法。   硬件设计   DSP和IPM   该系统工况为24小时连续工
[嵌入式]
基于DSP和IPM的<font color='red'>变频调速</font>系统的硬件设计
采用智能化单元的高压变频调速装置
  1 引言   高压变频的方式有多种,如高-低-高方式、三电平方式、元器件直接串联的二电平方式、单元串联的多电平方式等。在国内发展比较快、应用比较广的方式是单元串联多电平方式,本文中谈到的高压变频调速装置除特别注明均为单元串联多电平方式的高压变频调速装置。   单元串联多电平方式的高压变频调速装置从组成来看主要包括输入变压器、功率单元、主控制器三部分。输入变压器的主要功能是为功率单元提供电源;功率单元主要完成三相交流输入至单相交流输出的整流逆变功能;主控制器主要完成所有单元的协调工作以及对外的接口功能。从控制方法的实现来说,主要有两种途径,一种我们称之为集中控制型,一种称之为智能单元型。   集中控制型的高压变频调速装置
[电源管理]
通过USS协议实现变频调速器与PLC的通讯控制
1 引 言 在某卫星地球站控制系统中,天线控制系统与监控系统的距离有1 000 m。要求监控系统能实时读取和设置变频调的参数。在天线控制系统中安装了西门子S7-200可编程控制器和西门子变频器调速器。通过西门子S7-200的自由通讯口0与下挂的4台变频进行数字化的信息传递,采用USS协议。通过USS协议,S7-200 PLC可以实时读取和设置变频调的相关参数。通讯速率可达187~kb/s,通信介质采用RS 485屏蔽双绞线。利用S7-200的自由通讯口1与上位监控机通过RS 485方式通讯,将变频器的信息通过S7-200实时传送到上位工控机中。 通过这样的方式可以有效地实现远程监控、减少电缆的数量,提高了系统的自动化水平及运行
[工业控制]
全数字矢量变频器在密闭鼓风炉鼓风机上的应用
1  引言     主鼓风机是密闭鼓风炉生产工艺上要求与密闭鼓风炉同步的关键设备,风机性能和运行的安全可靠性直接制约着密闭鼓风炉的生产能力。本公司在100kt铅锌技术改造完成后,原有的2台6kV,1000kW的主鼓风机(靠阀门调节风量)已经不能满足密闭鼓风炉大风量生产的技术要求,为满足铅锌冶炼过程中对风量的严格要求,使主鼓风机有足够的可调能力与密闭鼓风炉相适应,决定使用西门子公司生产的IGBTIMOVERTMV全数字矢量变频器,经过一段时间的试运行,该系统具有显著的节电效果,较高的调速精度,简便的使用方法和易于实现自动控制等性能。 2  SIMOVERT MV功能及特点 2.1  技术指标和硬件特点     SIM
[嵌入式]
异步电机直接转矩弱磁控制研究
  在高速列车用感应电机直接转矩控制系统中,有时需要电机工作在高于额定转速的情况,对于感应电机,可以通过弱磁控制达到比较高的速度要求。在弱磁阶段,电机的转矩性能主要取决于电机的控制策略,其方法和基速也有所不同。其一,在弱磁范围内不是恒转矩调速,而是恒功率调节; 其二,在弱磁范围内,都是全电压工作,没有零电压状态,工作电压在整个区段中起作用。   传统的直接转矩控制弱磁方法是在弱磁区将定子磁链参考值与转速成反比变化。定子磁链参考值的过高过低,都会导致输出转矩的下降。传统的弱磁方法不能在已有的限制条件下获得电机的最大转矩输出能力 。文献 提出了基于电压闭环控制的弱磁方法,是基于转子磁链定向的方案,不适合于定子磁链定向的方案。文献
[电源管理]
异步电机直接<font color='red'>转矩</font>弱磁<font color='red'>控制</font>研究
异步电机直接转矩控制的ISR方法研究
1 引言 目前,矢量控制(vc)和直接转矩控制(dtc)已经被人们公认为是高性能的交流变频调速技术。矢量控制系统采用转子磁链定向,实现了定子电流转矩分量与磁链分量的解耦,可以按线性理论分别设计转速与磁链调节器(一般采用pi调节器),实行连续控制,从而获得较宽的调速范围,但系统易受转子参数变化的影响。直接转矩控制系统则舍去比较复杂的旋转坐标变换,直接在定子静止坐标系上,计算电磁转矩和定子磁链,并用双位式bang-bang控制对转矩和磁链进行调解,受电机参数影响较小,转矩响应快,但由于bang-bang控制本身属于p控制,不可避免地产生转矩脉动,影响系统低速性能。本文介绍的isr(indirekte selbst regelung)控
[工业控制]
异步电机直接<font color='red'>转矩</font><font color='red'>控制</font>的ISR方法研究
换热站的变频调速控制系统
1 概述 为节省能源,减少城市污染,在冬季,充分利用火力发电厂蒸汽轮机发电后的余热,可对北方城市集中供热。这种供热的过程是,从发电厂送出来的热水,到城市中的换热站经过热交换器后,一次供水热水温度从90益左右,下降到60益左右,然后再流回发电厂。送到城市居民家中的热水,流过各用户的热交换器,在热交换器中进行热交换,然后流回换热站,进入换热站热交换器的二次回水温度有50益左右,二次供水温度60益左右。陕西宝鸡有许多这样的换热站,大部分换热站设备比较简单,一般由数台热交换器,几台泵组成的循环泵组和一台补水泵构成。 而这些换热站的循环泵和补水泵因为采用人工开、关阀门控制流量,所以使管路的阻尼增大,从而造成电能浪费。随着变频技术的发展,采用
[嵌入式]
变频调速在福建恒源自来水厂的设计应用
PowerSmart系列高压大功率变频器,为电压源型高-高变频器。它采用多脉冲整流、多重化PWM、单元串联叠加的多电平拓扑结构,具有模块化设计、积木式组合、N+1备份、模块故障自动切除不间断运行、飞车启动、反转启动、工频与变频不停电切换、单元自动旁路、整机自动与手动旁路、高压掉电再恢复、低压掉电可连续运行等功能,同时具有高功率因数、低谐波污染的特点,输入和输出电流波形均接近正弦波。作为“第四代中高压变频器”采用双片DSP(数字系统处理器)作为控制系统的核心器件,解决了中、高压变频器采用工控机作为控制核心的所有缺点。本文通过高压变频器在现场大功率电动机负载上的应用,分析其工作原理,介绍了调速性能,对电压源型高-高方式的高压变频器做了
[工业控制]
<font color='red'>变频调速</font>在福建恒源自来水厂的设计应用
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved