基于增量式光电编码器位移传感器研究

发布者:Blissful444最新更新时间:2012-06-15 来源: 电子设计工程 关键字:增量式  光电编码器  位移传感器 手机看文章 扫描二维码
随时随地手机看文章
    传统的拉线式位移传感器大多采用电位器式位移传感器,它通过电位器元件将机械位移转换成与之成线性或任意函数关系的电阻或电压输出。普通直线电位器和圆形电位器都可分别用作直线位移和角位移传感器。但是,为实现测量位移目的而设计的电位器,要求在位移变化和电阻变化之间有一个确定关系。电位器式位移传感器的可动电刷与被测物体相连,物体的位移引起电位器移动端的电阻变化。阻值的变化量反映了位移的量值,阻值的增加与减小则表明了位移的方向。通常在电位器上给定电源电压,把电阻变化转换为电压输出。由于其电刷移动时电阻以匝电阻为阶梯变化,其输出特性亦呈阶梯形。如果这种位移传感器在伺服系统中用作位移反馈元件的时,则过大的阶跃电压会引起系统振荡。因此在电位器的制作中应尽量减小每匝的电阻值。同时,电位器式传感器的另一个主要缺点是易磨损、分辨力差、阻值偏低、高频特性差,从而导致测量精度下降。
    本项目基于增量式光电编码器原理研制的数字显示式拉线式位移传感器,一方面对目前拉线式位移传感的改进和完善,其动态范围大,具有温度修正功能,最大量程大,测量精度高。仪器成本低廉,安装、调试与定标方便,系统运行功耗低,抗干扰能力强,适用于野外长时间自动监测。一方面与传统拉线式位移传感器相比,不仅具有数字显示功能,良好的人机交互界面,而且可以与计算机实现交互,具有远程控制的优点。

1 增量式光电编码器简介
    编码器广泛用于位置和角度的测量,可分为绝对式编码器与增量式编码器。绝对式编码器其特点是输出信号与旋转位置一一对应,但其精度不高,而且成本较高。而增量式编码器其输出信号为脉冲信号,其脉冲个数与相对旋转位移有关,而与旋转的绝对位置无关,其精度较高,而且其成本相对较低。如果预先设定一个基准位置,则可以利用增量式编码器实现绝对式编码器的功能,也即可以测出旋转的绝对位置。
    增量式编码起按其输出可分为差分式和非差分式,他们的输出信号均为脉冲信号,非差分信号输出一般有AB两相脉冲信号,其高电平接近编码起的工作电压。而差分式信号输出A相、A非相、B相、B非相,其高电平只有编码起工作电压的一半,不管差分还是非差分的编码器,A相和B相信号波形完全相同,仅存在90度的相差。

2 位移传感器结构
    位移传感器采用铝合金结构设计,具有体积小、功耗低、抗干扰能力强、测量范围修改灵活、仪器成本低廉、安装、调试与定标方便等特点。同时具有良好的人机交互界面,使用直观方便。外观结构图见图1。



3 位移传感器设计
    感器硬件主要由光栅编码电路、信号处理电路、单片机和显示屏等组成,系统硬件原理框图结构图如图2所示。光栅编码电路主要将外部的位移转化为数字脉冲信号;功放电路信号处理电路主要将脉冲信号进行滤波整形放大;单片机组要完成信号的采集,同时将计算数字脉冲对应的实际位移;显示屏组要完成测试数据的实时显示。

[page]

    位移传感器正常工作时,外部线形位移通过光栅信号编码器转化为数字脉冲信号,传感器调整电路将接收此脉冲信号,经过阻抗匹配和信号驱动放大,然后送往信息处理电路,通过计算脉冲个数将外部线形位移换算成对应的数字量保存在动态RAM中,最后信息处理电路将驱动液晶显示屏将RAM中的数据显示在屏中。
3.1 光栅信号编码器
    光电式拉线位移传感器的结构主要由调制盘、红外线发光二极管(SFH485,发散角为40°)和红外接收二极管组成。仪器通过一钢丝拉线与待测位移物体相连,拉线采用线膨胀系数小、化学性能稳定的铟钢丝。当待测物体相对于光栅信号编码器的固定轴发生位置变化时,则位移量由拉线传动到光栅信号编码器上,调制盘的边缘均匀分布着透光孔,红外线发光二极管和接收管分别安置在调制盘的上下两边。用恒压源给红外线发光二极管供电,当调制盘转动时,发光二极管发出的光线将周期性的被遮挡,接收二极管上将出现周期的脉冲电压信号,每一个电压峰值即表示一个透光孔扫过接收二极管。将信号滤波、放大与整形后输出。
    设机械放大倍数为n,物体运动的位移量为△x,两相邻透光孔中心相距的弧长为L,则信号输出端的脉冲个数N可由下式表出:N=△x·n /L,记下脉冲的个数即可计算出位移变化量了。
    为了提高光栅信号传感器的抗干扰能力,光栅传感器采用24 V直流电源供电,经过后续电路将信号处理为幅值为5 V的脉冲信号。供信号处理电路采集处理。
3.2 调理电路
    调理电路将光栅信号编码器装置输出的信号进行滤波、放大与整形输出。调理电路将对传感器输出的信号进行以下处理:
    1)阻抗匹配:提高信号的输出阻抗,有效地减少信号在传输过程中的反射;
    2)提高信号的驱动负载能力:由于传感器输出信号的驱动能力很弱,连接负载时信号容易畸变。
3.3 信息处理电路
    信息处理电路首先将光栅信号编码器输出的数据进行采集,然后将数据进行运算处理,最后驱动液晶显示屏,将需要的数据显示。
    为了提高测长装置的抗干扰能力,尤其是光栅编码器输出脉冲的抖动,信息处理电路的接口与光栅编码器输出之间采用隔离耦合的方式通信。通过隔离耦合使信息处理电路接收信号不受光栅编码器输出抖动的影响。
    信息采集电路接收到从红外接收管输出的电压信号经滤波后由运放进行放大,使其峰值达到TTL电平,然后由施密特触发器进行整形,将信号变成一定脉宽的方波,如图3所示,然后单片机记下脉冲数。


    同时信息采集电路接收到外部计算机的指令后,可以控制其运行状态,具有远程控制的特点。
3.4 液晶显示模块
    本设计中采用JHD161A液晶显示屏。JHD161A具有微功耗、体积小、显示内容丰富、超薄轻巧的优点,在袖珍式仪表和低功耗应用系统中得到广泛的应用。
    JHD161A是一种用5x7点阵图形来显示字符的液晶显示器,是武汉博控科技有限公司生产的1行16个字符的LCD显示模块,控制芯片为三星电子公司生产KS0066驱动芯片。它采用16脚单排接口。
    液晶显示模块与信息处理电路通过扁平电缆连接,信息处理电路根据显示的需要,首先模拟液晶显示屏的读写时序,将数据写入液晶显示屏的控制芯片RAM中,然后控制显示屏的显示与清屏,从而达到显示屏数据的刷新和与外部线性位移的同步显示。

4 传感器的辨向识别设计
    光栅信号编码器是通过驱动装置驱动栅轮转动。栅轮轮沿为格栅状。紧靠栅轮格栅两侧为发光管和接收管,一侧是一红外发光管,另一侧是红外接收组件。红外接收组件为一三端器件,其中包含甲乙两个红外接收管。栅轮转动时,栅轮的轮齿周期性遮挡红外发光管发出的红外线照射到接收组件中的甲管和乙管,从而甲和乙输出端输出同周期的数字脉冲信号。栅轮轮齿夹在红外发射与接收中间的部分的移动方向为上下方向,由于红外接收组件中甲乙两管与红外发射管的夹角不为零,于是甲乙管输出的数字信号有一个相位差。
    信息处理板上单片机通过此脉冲相位差判知栅轮的转动方向,同时计算出栅轮的转动速度和牵引绳的移动位移。
    为了提高传感器的可靠性,本设计中借鉴了差分式增量编码器的设计特点,即设计中引用了A相非信号,极大地提高了传感器辞向的可靠性。同时通过信息处理板上单片机对采集信号的处理,有效地提高了传感器的稳定性。由于单片机相应中断信号具有一定的优先级,将两路外部中断通过同一路信号源通过一定的处理控制,从而确保中断响应的正确可靠,中断程序中对另一路信号的特征进行判断,从而实现传感器的辨向识别。

5 无误差测量的原理及其实现
5.1 无误差测量的原理
    检测A相一个周期中的同一个边沿位置,如果在此边沿位置检测到一个上升沿,则对应编码器的一个旋转方向;如果在此边沿泣置检测到一个下降沿,则对应编码器的另一个旋转方向。B相为高电平时,若检测到A相为上升沿,则可判断出编码器输出波形的运动方向为从左向右,即编码器为逆时针方向旋转;若检测到A相为下降沿,则可判断出编码器输出波形的运动方向为从右向左,即编码器为顺时针方向旋转;B相为低电平的情况可类推。
5.2 无误差测量的软件实现
    无误差测量的软件实现原理:当A相出现一个上升沿(即A非相出现一个下降沿),若检测到B为高电平,则用软件令计数器加1;当A相出现一个下降沿,若检测到B为高电平,则用软件令计数器减1。这样,两个计数器之差,则对应了编码器实际的角位移,而其正负对应了旋转方向。设置单片机外部中断的触发方式为下降沿触发,当INT0产生中断,判断B为高电平,则令计数器减1;当INT1产生中断,判断B为高电平,则令计数器加1。
    这种方法的优点是:其硬件简洁,程序简单,测量精确;其缺点是:其旋转速度要受到单片机响应速度的限制。其对计数器的加减都是通过运行指令实现的,这也要花费一定的时间,使得其响应频率降低,其响应条件为编码器的输出脉冲周期要大于单片机的中断响应时间与中断服务时间之和,而输出脉冲周期又与编码器的旋转速度有关,旋转越快,输出脉冲周期就越小。

[page]

5.3 无误差测量的硬件电路实现
    如前原理所述,使用A相的沿触发(上升沿或下降沿)作为计数脉冲,而用B相的电平作为计数起停控制。方法1:利用单稳态触发器实现;方法2:利用定时计数器8253实现。
    8253计数器的计数脉冲为下降沿计数,这样将A相接至8253两个计数器的时钟信号输入端(CLK),同时将B相接至8253的两个计数器的门控信号输入(GATE),选择模式0,其特点为B相为低电平时,计数停止;B相为高电平时,进行计数,而具体哪个计数器计数以及何时计数取决于A相的下降沿,这时只有一个计数器计数。
    综合上述测量原理和特点,本设计中采用软件的测量方法,设计方法简单,设计灵活。

6 系统软件设计
   软件是系统工作的核心,软件有两部分组成,一部分为断相应程序,一部分为循环处理程序,循环处理程序中调用了大量的子程序,为了提高系统的实时性,软件全部采用标准的汇编程序设计,充分利用硬件系统的资源。中断程序比较简单,结构如图4所示。循环程序结构如图5所示。

          



7 结束语
    与传统的位移传感器相比,本设计具有体积小、功耗低、抗干扰能力强、测量范围修改灵活、仪器成本低廉、安装、调试与定标方便等特点。尤其低功耗的设计,由于其功耗较低,尤其适用于长期野外自动监测;抗干扰能力强,适用于野外长时间自动监测。比如山体滑坡、铁路路基、矿山岩体和隧道等的位移监测。同时具有良好的人机交互界面,使用直观方便。

关键字:增量式  光电编码器  位移传感器 引用地址:基于增量式光电编码器位移传感器研究

上一篇:环境光传感器之ALS背光控制的工作理念
下一篇:基于无线传感器网络的油田数据采集网络设计

推荐阅读最新更新时间:2024-05-02 22:07

AD698在DGC-6PG/A差动电感位移传感器中的应用
LVDT(Linear Variable Differential Transformer,线性可调差接变压器)是由霍德利(G.B.Hoadley)于1940年获得的专利。他的原理,当铁磁性磁心受到与用于检测的移动部分相连的非铁磁杆拖曳沿他的内部移动时,初级绕组与2个次级绕之间的互感将发生变化。当初级绕组由交流电压供电时,铁磁性磁心的位置的变化就会引起同名端反相串联的2个次级绕组之间感应的电压之差的变化。这样通过检测电压差就可以确定非铁磁杆的移动量。因此,LVDT就可以直接用于位移的测量,也可以测量与位移有关的任何机械量,如振动、加速度、应变、比重、张力和厚度等。同时,这个电压差的检测也成为急需解决的问题。传统的方法采用差动整
[工业控制]
AD698在DGC-6PG/A差动电感<font color='red'>式</font><font color='red'>位移传感器</font>中的应用
激光位移传感器测量原理及其应用范围详解
前言 激光位移传感器能够利用激光的高方向性、高单色性和高亮度等特点可实现无接触远距离测量。激光位移传感器(磁致伸缩位移传感器)就是利用激光的这些优点制成的新型测量仪表,它的出现,使位移测量的精度、可靠性得到极大的提高,也为非接触位移测量提供了有效的测量方法。 激光位移传感器因其较高的测量精度和非接触测量特性,广泛应用于高校和研究机构、汽车工业、机械制造工业、航空与军事工业、冶金和材料工业的精密测量检测。激光位移传感器可精确非接触测量被测物体的位置、位移等变化,主要应用于检测物的位移、厚度、振动、距离、直径等几何量的测量。按照测量原理,激光位移传感器原理分为激光三角测量法和激光回波分析法,激光三角测量法一般适用于高精度、短距离的
[测试测量]
激光<font color='red'>位移传感器</font>测量原理及其应用范围详解
基于Arduino开发环境的光电编码器检测仪设计方案
Arduino是一款基于单片机系统的电子产品开发平台,它的软硬件系统都具有高度的模块化,而且软件系统是完全开源的。其硬件系统也是高度模块化的,在核心控制板的外围有开关量输入/输出模块、各种模拟量传感器输入模块、总线类传感器的输入模块,还有网络通信模块 .Arduino有自己特有的编程语言。其语法规则类似C/C++语言,IDE环境和语言把单片机与硬件相关的一些参数都参数化并进行了很好的封装,把端口都打包,寄存器、地址指针之类的基本不用管,大大降低了软件开发难度。因此不用开发者去了解其硬件结构即可对其编程,实现设计者的设计意图和创意 . 本文提出了一种基于Arduino开发环境的光电编码器检测仪设计方案,能够对光电编码器的好坏进行判断
[电源管理]
基于Arduino开发环境的<font color='red'>光电编码器</font>检测仪设计方案
关于激光位移传感器测量方法的介绍
激光位移传感器的测量方法是什么?激光位移传感器是一种常用的测量仪器,在多个行业中都有一定的应用。激光位移传感器有两种常用的测量方法,三角测量法和回拨分析法。大家对于这两种测量方法都了解过吗?下面小编就来为大家具体介绍一下激光位移传感器的侧测量方法吧,希望可以帮助到大家。 三角测量法 激光发射器通过镜头将可见红色激光射向被测物体表面,经物体反射的激光通过接收器镜头,被内部的CCD线性相机接收,根据不同的距离,CCD线性相机可以在不同的角度下 看见 这个光点。 根据这个角度及已知的激光和相机之间的距离,数字信号处理器就能计算出传感器和被测物体之间的距离。 同时,光束在接收元件的位置通过模拟和数字电路处理,并通过微处理器分析,计
[测试测量]
基于MSP430F149单片机的光电编码器位置检测系统方案
1、光电编码器原理 光电编码器是集光、机、电技术于一体的数字化传感器,其基本原理就是在特制的码盘上按一定规律编排光栅图案,将这些图案用光电头读取,转变为高低有序排列的电平信号。光电编码器输出信号为A , B , Z 3 个信号,其中A , B 为相位差90°的方波信号, Z 为过零脉冲信号。如图1所示,光电编码器每旋转一周,A、B 相输出同样数量的脉冲, Z相输出一个脉冲,脉冲的个数和电机旋转角度,电机的运行距离成正比关系。 A相、B相都是光电编码器产生的,这两个信号的前沿和后沿都对应着光电码盘的1/4节距的信息鉴相就是通过分析图1的A相,B相信号,得出电机的旋转方向。如果A相脉冲超前B相90,电机正转,反之,电机反转。
[单片机]
基于MSP430F149单片机的<font color='red'>光电编码器</font>位置检测系统方案
基于三菱FX2N的增量PID控制器设计
在工业生产中,常需要采用闭环控制方式来控制温度、压力、流量等连续变化的模拟量。无论是使用模拟控制器的模拟控制系统,还是使用计算机的数字控制系统,PID控制器都得到了广泛的应用。这是因为这种方法不需要精确的控制系统数学模型,有较强的灵活性和适应性。但是在数字PLC控制系统中,普通的PID算法对所有过去状态存在依赖性,从而引起系统较大的超调,使系统稳定性下降。增量式PID控制算法每次输出只输出控制增量,必要时可通过逻辑判断限制故障时的输出,从而降低了因机器故障导致PID误输出给系统带来严重后果的影响。 在实际系统中,PLC控制模拟量可采用PLC自带的PID过程控制模块,但对要求比较高的场合采用改进的PID控制算法,就必须由用户
[工业控制]
基于三菱FX2N的<font color='red'>增量</font><font color='red'>式</font>PID控制器设计
基于红外超声光电编码器的室内移动小车定位系统
引 言 目前,使用超声波技术进行空间测量和定位已相当普遍。有的运用超声波的反射特性,有的综合运用红外和超声波传感器采取三边测距的定位方法,前者因为超声波传输介质的影响使测量精度无法提高,超声波衰减特性使其传播的距离有限,再利用反射特性更加缩短了传播的距离。后者虽然精度有所提高,测量的距离增加了,但是出现了测量盲区的问题,待测目标在某些位置不能同时检测到3个以上的超声波信号时,使系统无法定位。本文在第2种方法的基础上在系统中加入了光电编码器测距定位原理,消除其定位盲区的问题。 1 定位原理 1.1 红外超声三边测距定位原理 首先在室内建立一直角坐标系,规定好原点、X轴、Y轴、和Z轴。在室内上空固定位置设立3个参考点A
[嵌入式]
基于dsPIC30F6010三相异步电动机控制系统的设计与实现
0 引言 20世纪80年代开始,电力电子、计算机技术和自动控制理论发展,为交流电气传动产品的开发创造了条件,使得交流传动逐步具备了宽调速范围、高精度、快速动态响应及四象限运行良好的技术性能。今天,电动机已经成为最主要的动力源,在生产和生活中占有重要地位。而交流三相异步电动机以其结构简单、制造方便、运行可靠、价格低廉和控制灵活等特点在交流电机中居于主导地位。随着高性能数字处理芯片DSP的广泛应用,三相异步电动机的调速进入了一个新阶段,其调速性能几乎可以与直流电机相媲美。本论文采用DSC(数字信号控制器),它属于嵌入式控制器,集成了单片机(MCU)的控制功能以及数字信号处理器(DSP)的计算能力,而且价格便宜。 1 系统硬件设计
[单片机]
基于dsPIC30F6010三相异步电动机控制系统的设计与实现
小广播
热门活动
换一批
更多
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

更多精选电路图
换一换 更多 相关热搜器件
更多每日新闻
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved